
LearnAir: toward Intelligent, Personal Air Quality Monitoring

David B. Ramsay

BSEE and BA, Case Western Reserve University (2010)

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning in partial fulfillment of the requirements for the degree of Master of Science at
the Massachusetts Institute of Technology

September 2016

©Massachusetts Institute of Technology 2016. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MIT Media Lab
August 6, 2016

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joseph A. Paradiso

Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pattie Maes

Academic Head
Program in Media Arts and Sciences





LearnAir: toward Intelligent, Personal Air Quality Monitoring

David B. Ramsay

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning
on August 6, 2016, in partial fulfillment of the requirements for
the degree of Master of Science

Abstract

Air pollution is responsible for 1/8 of deaths around the world. While the importance of air quality has
led to a boom in inexpensive air sensors, studies have shown that the status quo of sparse, fixed sensors
cannot accurately capture personal exposure levels of nearby populations. Especially in urban landscapes,
pollutant concentrations can vary over just a few seconds or a few meters. Unfortunately, the portable
monitors that are capable of accurately measuring these pollutants cost thousands of dollars.

That hasn’t stopped a deluge of cheap, portable consumer devices from entering the market. These solu-
tions frequently claim better accuracy, but universally fail under real-world validation. Instead of compet-
ing to build a more accurate sensor, we take the approach of trying to predict when we can trust the cheap
sensor we have, based on ambient conditions and measurements.

Well-designed, sub-$100 sensors have recently started to perform with high precision and accuracy. While
their fundamental operation is sound, these affordable sensors cannot incorporate costly, industry stan-
dard techniques for mitigating issues like cross-sensitivity, dynamic airflow, or high humidity. Fortunately,
if the core principles of the device are robust, machine learning techniques should be able to predict sys-
tematic measurement failure based on a handful of related indicators. In this thesis, we test and demon-
strate the potential for logistic regression machine learning techniques to predict and classify sensor mea-
surements as ‘correct’ or ‘incorrect’ with high reliability. These techniques are also useful for quantifying
sensor precision as well as cross-seasonal prediction strength.

After demonstrating the value of this approach, we implement a scalable database solution using a seman-
tic web technology know as ChainAPI. The tools developed for this framework allow automatic learning
algorithms to crawl through the database, access the most recent data, update their training model, and
populate the database with the processed data for other crawling scripts to interact with. This backend has
implications for air quality data storage, interaction, and exchange.

Finally, we build a portable, Bluetooth enabled air quality device that connects to ChainAPI through a
mobile phone app, and takes advantage of the machine learning algorithms running in its backend. This
device improves the reliability of sensor data compared with similar-cost systems.

The learnAir device empowers individuals to trust their personal air quality data, and provokes a dialog
about sensor reliability in the citizen sensing community. Its novel database architecture promotes new
ways of interacting with large, dynamic datasets, and new tools to characterize affordable sensors and
devices. Finally, applied logistic regression algorithms assure the accuracy of cheap, distributed sensor
data– creating a trusted way for researchers to collaborate with citizen scientists from around the world.

Thesis Supervisor: Joseph A. Paradiso
Title: Professor of Media Arts and Sciences





LearnAir: toward Intelligent, Personal Air Quality Monitoring

David B. Ramsay

The following person served as a reader for this thesis:

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Steven Hamburg

Chief Scientist
Environmental Defense Fund





LearnAir: toward Intelligent, Personal Air Quality Monitoring

David B. Ramsay

The following person served as a reader for this thesis:

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethan Zuckerman

Associate Professor of the Practice
Program in Media Arts and Sciences





Acknowledgments

Many selfless people advised, guided, and supported me during this thesis. I’m humbled and
grateful to count them all as close friends and collaborators. I couldn’t have done this without
them.

First I’d like to thank my advisor, Joe Paradiso. He not only laid the groundwork for this thesis
with his depth of expertise and strong connections; he has been an incredibly thoughtful, in-
telligent, and warm advisor. I will always be grateful for the chance he took on me, to join his
lab and represent his vision in the world. I hope I might one day be half as sharp, capable, and
kind.

The Enivornmental Defense Fund- particularly my reader Dr. Steven Hamburg and his col-
laborator Millie Chu Baird- have been instrumental in shaping the direction of this work, and
providing great insight and invaluable community connections. They supported my Media Lab
appointment and this work; it would not exist without them. I’m forever grateful not just for
their funding, but for their active engagement from the very beginning.

Ethan Zuckerman has been a true mentor to me since this process began. I’ve never met a more
helpful, brilliant, encouraging, and eloquent professor. He has been integral in shaping this
project, but the most valuable things I’ve gleaned from him fall far beyond the bounds of this
thesis and will stay with me well past its completion.

Ethan’s group shares his spirit, and I’m indebted to the entire Civic Media Team. Emilie Reiser
has been a brilliant collaborator and a wonderful friend throughout this process, investing
countless hours helping and challenging me. Don Blair has also been incredibly warm, thought-
ful, and constructive over many hours of conversation. The extended Civic family has been very
generous with their time, and I’d like to thank all of them, particularly Dave Mackintosh, Xiuli
Wang, and Colin McCormick.

I’ve relied on several experts to shape and inform my thinking about this project. In particular,
I’m indebted to Safecast’s Sean Bonner and Pieter Franken for their insight, which launched
me into this project with a strong foundation. As I’ve continued, Dr. Jesse Kroll and David
Hagan from MIT’s Civil and Environmental Engineering Department have been very unselfish
with their time and expertise. Their technical mastery of the field is truly inspiring.

I’m completely beholden to MassDEP- particularly John Lane and Tom McGrath- for allowing
me 24/7 access to the EPA measurement site. This thesis wouldn’t exist without their flexibility,
and they’ve been delightful, responsive, and accomodating collaborators.



I’d also like to acknowledge my Responsive Environments family- particularly Spencer Rus-
sell, whose CHAIN work forms the basis for much of my contribution here (and who spent a
tremendous amount of time helping me understand how to use it), and Brian Mayton for his
technical insight and advice throughout the process. A big thanks goes to Nan, Evan, Juliana,
Asaf, Artem, Jie, Donald, Vasant, and Gershon for useful, fun, and inspiring conversations
along the way. It’s a pleasure to work with people I admire so much.

Amna, Keira, and Linda- you three have kept me on track and been incredibly flexible and
kind throughout the last two years. Thank you for the support, the smiles, and the gentle re-
minders. To my Boston friends - Kristy, Chetan, Will, Nate, and Dylan - thanks for putting up
with me and keeping me sane throughout this process.

On a personal note, I’d like to thank the mentors that have invested in me, shaped me into
who I am, and continue to challenge, guide, and inspire me. Dan Gauger, Neal Lackritz, Ted
Burke, and bunnie - I can’t overstate the impact you each have had on my life- as technical
mentors certainly, but more importantly as confidants and role models. You inspire me to think
creatively and make a difference through ambitious, high-quality work. You motivate me to live
a more balanced life and approach the world with kindness and gratitude. You challenge me to
re-examine my priorities, my goals, and my philosophies through your example. You’ve each
made an indelible impact on my life, and I will continue to strive to follow in your example.

Most of all, I’m indebted to my wonderful and supportive family- my parents Karen and Brad,
my sister Tracy, and the entire Benson/Ramsay clan. Thank you for believing in me, pushing
me, and guiding me throughout the last 29 years. I admire you, I love you, and I owe you ev-
erything.



Contents

1. Introduction 21

2. Background and Motivation 25
Air Monitoring 25
Sensor Networks 32
Motivation 35

3. Related Work 39
Air Quality 39
Data Sharing Solutions 42

4. Overview of Design and Contributions 45
Machine Learning Validation 46
ChainAPI Instance and Tools 47
A Provocative Example 48

5. Hardware Design and Analysis 51
LearnAir Version 1 52
MassDEP Site 55
LearnAir Version 2 59
LearnAir Version 3 62
Hardware Comparison and Analysis 64

6. ChainAPI for Air Quality 71
A New Ontology for Air Quality 73



12

Traversing ChainAPI 78
ChainAPI Tools for Scalable, Automatic Data Analysis 87
Summary 98

7. Data Analysis and Machine Learning 99
Test Conditions and Data Collection Summary 100
Overview of Data Pre-Processing and ML Strategy 102
Machine Learning Features 106
General Trends in the Data 111
SmartCitizen CO 113
SmartCitizen NO2 118
Sharp Dust Sensor 121
AlphaSense CO 127
AlphaSense NO2 135
AlphaSense O3 139
Results Summary 145

8. Conclusions and Future Work 149
Insights 149
Applications 152
Future Work 154
Summary 156

Appendix A - Notes on Project Selection and Prior Work 159

Appendix B - Hardware and Firmware 163
Schematics 163
Firmware 168
Hardware Analysis 175

Appendix C - ChainAPI Code 177

Appendix D - Machine Learning 179
Test Conditions and Data Summary 179
Data Pre-Processing 183



13

Features 183
SmartCitizen CO 184
SmartCitizen NO2 187
Sharp Dust Sensor 190
AlphaSense CO 195
AlphaSense NO2 200
AlphaSense O3 203





List of Figures

1 AlphaSense Optical PM2.5 Sensors 27
2 AlphaSense Electrochemical Gas Sensors 29

3 LearnAir Sensor installed at MassDEP site, opened 52
4 LearnAir Sensor installed at MassDEP site 53
5 Corroded SmartCitizen Kit on the right, Conformal-coated new kit

on the left. Relevant sensors on the new kit were taped off before coat-
ing to prevent contamination 53

6 A picture of the Roxbury MassDEP measurement site where the Lear-
nAir sensor was installed 55

7 LearnAir Sensor installed at the MassDEP site, close-up 56
8 LearnAir Sensor (box on left) installation next to MassDEP inlet (top

of pole on right) 58
9 Main and daughter boards of learnAir V2.0 59
10 Second revision, Atmel based learnAir main board mated with the

AlphaSense sensor frontend 60
11 Final design of the portable system 61
12 Layouts for revisions 2.0 and 3.0 of the learnAir board 62
13 Third revision, STM32L152-based learnAir main board next to the

AlphaSense sensors 63
14 Humidity Comparison of SmartCitizen (orange) and ForecastIO (green)

over 4 days 64
15 Humidity Comparison, SmartCitizen and ForecastIO 65
16 AlphaSense Raw Temperature Data (green) with 15-minute averag-

ing (orange) 65
17 Temperature close-up 66
18 Temperature Comparison, SmartCitizen and ForecastIO 66
19 A picture of a simple laminar flow test setup for rough wind direc-

tivity characterization 67
20 Wind Directivity Polar Patterns 68
21 Wind Speed Measurement with 10% Accuracy, Zoomed 69
22 Discrepancy in Windspeed Measurement vs Wind Direction 70



16

23 Summary of New ChainAPI Infrastructure 71

24 Weather during Test Period. 100
25 Temperature and Humidity during Test Period. 101
26 Humidity Derivative Feature Creation 106
27 Temperature Derivative Feature Creation 107
28 Temperature Inside vs. Outside the Device during Test Period 108
29 Humidity Inside vs. Outside the Device during Test Period 108
30 Reference Sensors Measurements During Test Period 112
31 Two Example Transient Events Measured by Reference Sensors, 4/25

and 5/22 112
32 SmartCitizen CO Raw Data (orange) vs. EPA reference (green) 113
33 SmartCitizen CO with 7.5% Accuracy Threshold 114
34 SmartCitizen CO ROC Curve 117
35 SmartCitizen NO2 Raw Data 118
36 SmartCitizen NO2 with 10% Accuracy Threshold 119
37 SmartCitizen NO2 ROC Curve 120
38 Sharp Particulate LMSE Calibration 122
39 2 day Average Sharp Particulate LMSE Calibration 123
40 Sharp Particulate with 30% Accuracy Threshold 124
41 48-hour Average Sharp Particulate ROC 125
42 Sharp Particulate ROC Curve 125
43 AlphaSense CO Sensor 1 Raw Data Zoomed 128
44 AlphaSense CO Sensor 2 after LMSE Calibration 129
45 AlphaSense CO Sensor 1 and 2 with 5% Accuracy Threshold 130
46 AlphaSense CO Sensor 1 ROC Curve 134
47 AlphaSense CO Sensor 2 ROC Curve 134
48 AlphaSense NO2 Raw Data Zoomed 135
49 AlphaSense NO2 with 10% Accuracy Threshold 136
50 AlphaSense NO2 ROC Curve 137
51 AlphaSense O3 Sensor 1 Raw Data Zoomed 140
52 AlphaSense O3 Sensor 1 and 2 with 15% Accuracy Threshold 141
53 AlphaSense O3 Sensor 1 ROC Curve 143
54 AlphaSense O3 Sensor 2 ROC Curve 143

55 Original Concept #1 160
56 Original Concept #2 160

57 Wind Speed Measurement with 10% Accuracy 176
58 Wind Direction with 10% Accuracy WindSpeed Measurements De-

noted 176

59 Precipitation Intensity during Test Period 179
60 Ambient Pressure during Test Period 180
61 Cloud Cover during Test Period 181



17

62 Dew during Test Period 181
63 Lux during Test Period 182
64 Lux during Test Period 182
65 ML feature histograms plotted with WEKA Tool 183
66 SmartCitizen CO after LMSE Calibration 184
67 SmartCitizen CO with 5% Accuracy Threshold 185
68 SmartCitizen CO Prediction Accuracy 185
69 SmartCitizen CO ROC Using Top 15 Features 186
70 SmartCitizen NO2 after LMSE Calibration 187
71 SmartCitizen NO2 with 4% Accuracy Threshold 188
72 SmartCitizen NO2 ROC Using Top 15 Features 189
73 Sharp Raw Particulate Data 190
74 Sharp Particulate Prediction Accuracy 191
75 Sharp Particulate ROC Using Top 15 Features 192
76 48-hour Average Sharp Particulate ROC 192
77 48-hour Average Sharp Particulate ROC Using Top 15 Features 193
78 Reduced Tolerance Sharp Particulate ROC 193
79 Reduced Tolerance Sharp Particulate ROC Using Top 15 Features 194
80 AlphaSense CO Sensor 1 Raw Data 195
81 AlphaSense CO Sensor 1 after LMSE Calibration 196
82 AlphaSense CO Sensor 1 and 2 with 7.5% Accuracy Threshold 196
83 AlphaSense CO Sensor 1 Prediction Accuracy 197
84 AlphaSense CO Sensor 1 ROC Using Top 15 Features 198
85 AlphaSense CO Sensor 2 ROC Using Top 15 Features 199
86 AlphaSense NO2 Raw Data 200
87 AlphaSense NO2 after LMSE Calibration 201
88 AlphaSense NO2 with 4% Accuracy Threshold 201
89 AlphaSense NO2 ROC Using Top 15 Features 202
90 AlphaSense O3 Sensor 1 Raw Data 203
91 AlphaSense O3 Sensor 1 after LMSE Calibration 205
92 AlphaSense O3 Sensor 2 after LMSE Calibration 206
93 AlphaSense O3 Sensor 1 and 2 with 7.5% Accuracy Threshold 206
94 AlphaSense O3 Sensor 2 Prediction Accuracy 207
95 AlphaSense O3 Sensor 1 ROC Using Top 15 Features 207
96 AlphaSense O3 Sensor 2 ROC Using Top 15 Features 208





List of Tables

1 Machine Learning Features used to Predict Sensor Accuracy 110
2 Error Rates for Predicting SmartCitizen CO Accuracy with Logistic

Regression 115
3 Average SmartCitizen CO Confusion Matrix w/Shuffled K-Fold 115
4 Top Features for Predicting SmartCitizen CO 116
5 Error Rates for Predicting SmartCitizen NO2 Accuracy with Logis-

tic Regression 120
6 Top Features for Predicting SmartCitizen NO2 121
7 Average SmartCitizen NO2 Confusion Matrix w/Shuffled K-Fold 121
8 Error Rates for Predicting Sharp Accuracy with Logistic Regression 124
9 Average Sharp Particulate Confusion Matrix w/Shuffled K-Fold 124
10 Top Features for Predicting Sharp Particulate 126
11 Error Rates for Predicting CO Sensor 1 Accuracy with Logistic Re-

gression 130
12 Error Rates for Predicting CO Sensor 2 Accuracy with Logistic Re-

gression 131
13 Average AlphaSense CO Sensor 1 Confusion Matrix w/Shuffled K-

Fold 131
14 Average AlphaSense CO Sensor 2 Confusion Matrix w/Shuffled K-

Fold 131
15 Top Features for Predicting AlphaSense CO Sensor 1 132
16 Top Features for Predicting AlphaSense CO Sensor 2 133
17 Error Rates for Predicting AlphaSense NO2 Accuracy with Logis-

tic Regression 136
18 Average AlphaSense NO2 Confusion Matrix w/Shuffled K-Fold 136
19 Top Features for Predicting AlphaSense NO2 138
20 Error Rates for Predicting O3 Sensor 1 Accuracy with Logistic Re-

gression 140
21 Error Rates for Predicting O3 Sensor 2 Accuracy with Logistic Re-

gression 140
22 AlphaSense O3 Sensor 1 Confusion Matrix w/Shuffled K-Fold 141
23 AlphaSense O3 Sensor 2 Confusion Matrix w/Shuffled K-Fold 141



20

24 Top Features for Predicting AlphaSense O3 Sensor 1 142
25 Top Features for Predicting AlphaSense O3 Sensor 2 144
26 Summary of Machine Learning Results 147

27 Most Frequent Weather During Co-location Test 180
28 Top 15 Features from Random Forest for SmartCitizen CO, used in

Pruned Logistic Regression 186
29 Top 15 Features from Random Forest for SmartCitizen NO2, used

in Pruned Logistic Regression 188
30 Top 15 Features from Random Forest for Sharp Sensor, used in Pruned

Logistic Regression 191
31 Top 15 Features from Random Forest for CO Sensor 1, used in Pruned

Logistic Regression 197
32 Top 15 Features from Random Forest for CO Sensor 2, used in Pruned

Logistic Regression 198
33 Top 15 Features from Random Forest for AlphaSense NO2, used in

Pruned Logistic Regression 202
34 Top 15 Features from Random Forest for O3 Sensor 1, used in Pruned

Logistic Regression 204
35 Top 15 Features from Random Forest for O3 Sensor 2, used in Pruned

Logistic Regression 204



1. Introduction

Around the world, people are experiencing adverse health effects as a result
of poor air quality. It is currently impossible for them to accurately track
and understand their exposure using affordably-priced technology. While
consumer monitoring solutions claim to address this disparity, time and again
they are shown to be unreliable.

What if we could make cheap, personal air quality data trustworthy? What
could individuals, communities, and research organizations achieve with this
new data? How could we facilitate an open and collaborative ecosystem for
sharing this data?

In 2014, the World Health Organization (WHO) revised previous
estimates of air pollution related mortality– more than doubling
them. [1] Shockingly, it is now estimated that one in eight total global
deaths are the result of air pollution exposure, making air pollution
the world’s single largest environmental health risk. [1, 2] These
revisions hint at the complexity of monitoring air pollution– the
link from standard measurement techniques to personal exposure,
and the further link from exposure to health, are still difficult to
model. Failure to understand these relationships can undermine and
obfuscate the health risks facing the global community. [1, 2, 3, 4, 5]

For the millions of people living in toxically polluted cities around
the world, understanding their daily pollution exposure– and making
informed changes to minimize it– could literally lengthen their lives.
Affordable consumer devices have exploded over the last several
years to address this need; however, none have proven reliable under
real-world conditions. [6] Research continues to drive smaller and
cheaper sensor technology, but the underlying physics and their
associated manufacturing costs limit what is currently feasible.

The lack of reliable personal monitoring solutions is also a systemic
problem. In many cities, political rhetoric and policy are in play as



22

citizen groups and research organizations mobilize around the issue.
Local governments are installing distributed air quality networks– in
some cases with citizen groups at the helm. Unfortunately, pervasive
misinformation about the data quality of these new networks makes
it easy for smart city initiatives to find themselves with solutions that
yield limited benefits. At best this is a waste of time and money; at
worst, it may precipitate unnecessary panic or ill-informed policy-
making.

Proper education of politicians, citizen sensing groups, and the pub-
lic is an important and difficult undertaking. In many cases, air
quality rhetoric has out-paced its understanding, and the advocates
working to correctly frame the discussion are playing from behind.
Long-term, a market saturated with unreliable instruments could
lead to disillusionment with the technology and friction surrounding
the issue and its proponents.

While well-intentioned organizations figure out how to interact and
guide community sensing initiatives to act correctly and responsi-
bly, they also have a lot to gain from distributed, reliably-measured
personal data. A breakthrough in personal sensing could unlock
amazing insight into pollution modeling and epidemiology. Unfortu-
nately, there are open questions in the environmental sensing world
about how to store, interact with, characterize, and use these data.
Even simple sharing of data amongst well informed organizations
and researchers– without the confounding factor of unknown data
quality– is an actively-debated issue. Differences in data labeling and
data collection methodology make it difficult to agree upon a set of
definitions and standards.

As we’ve seen, there are many serious challenges and much unre-
alized potential– for individuals, policy-makers, and organizations–
that arise from the lack of trustworthy, affordable air quality moni-
toring approaches. Many researchers attempt to solve this problem
directly by designing smaller and cheaper sensor technologies. Un-
fortunately, it is incredibly hard to improve the cost/reliability of a
mature technology by simply re-optimizing the same core operat-
ing principles. Critically, there is also no agreed-upon standard for
characterizing these device in real-world conditions. Many consumer
devices unwittingly find themselves re-hashing the same core design
principles and claiming improvement based on unrealistic, controlled
laboratory tests.

In this thesis, we explore a novel approach to advancing the quality



23

of affordable, personal air quality data. Instead of fighting to make
more reliable distributed sensors, our goal is to predict when a sensor
is accurate and when it is not.

An affordable sensor may lose accuracy in predictable ways. An oth-
erwise poor quality sensor may provide very trustworthy, repeatable
data for a narrow set of climates, geographies, or seasons. Previously,
there has been no systematic way to understand, classify, or predict
these patterns. With this work, we test the limits of this approach
and build a device that takes advantage of it. The learnAir system
doesn’t attempt to be more accurate than similar cost systems. It sim-
ply predicts when it is likely to be accurate, and when it is likely not
to be.

The ramifications of such a design are numerous. If it succeeds, it
will provide more accurate personal exposure information than com-
parable sensor systems– empowering individuals to more intelli-
gently address any health concerns. It will also empower researchers
and organizations to interact with data from historically untrustwor-
thy sources. Furthermore, the algorithms underlying the learnAir
system might be useful in matching existing sensors with climates
and geographies where they will succeed– not only informing and
improving the decision-making behind large-scale installations, but
fundamentally altering the conversation to reflect its true complexity.

The learnAir system is designed in a scalable way, with an easy-to-
use, open back-end. The structure allows sensors to compare them-
selves against one another, learn from one another, and automatically
improve their learning models over time. As more sensors are added
to the network, each benefits from the collective, shared data. For
instance a sensor tested and deployed in the California summer will
learn from the same type of sensor tested in a Boston winter– form-
ing a more accurate and complete real-world model than either in
isolation. This novel back-end design has powerful implications for
the air quality community. It not only points to principles for shar-
ing air quality data, but also stakes a claim in how researchers and
engineers may utilize any distributed data set where quality is a
significant variable.

The learnAir hardware is a portable, Bluetooth Low Energy (BLE)
connected system that talks to its database through a smartphone
app. In the cloud, its data is automatically compared to any nearby,
higher quality EPA reference sensors, and the device learns to predict
its own accuracy based on this comparison. LearnAir uses weather



24

data, as well as on-board sensors that measure temperature, humid-
ity, light, wind, motion, and other pollutants, to predict its accuracy.

In other words, when the device is next to a higher quality sensor, it
will automatically compare itself against the reference to see when
its readings are consistent. If it discerns an inconsistent reading, it
analyzes the weather and other ambient conditions to gauge whether
there are any patterns that correlate with its inaccuracy. It also ana-
lyzes patterns that would suggest it is accurate.

Thus, every measurement learnAir makes comes with a prediction
as to whether it is correct (as compared with a reference measure-
ment method), as well as a probability that it has guessed its correct-
ness accurately. This information is based on a shared data resource,
which houses a constantly updating sensor model. This model takes
into account all of the measurements ever reported to the system by
that type of sensor.

In order to build this device and the supporting infrastructure, and
in order to validate that a system of this type is useful, we pose the
following preliminary questions:

(1) How well can machine learning algorithms predict the accuracy
of an unreliable sensor if some information is available about the
sensor’s environment? What is the best approach to applying ma-
chine learning to this problem? Answering this question successfully
has implications beyond air quality sensor networks, informing new
topologies for high/low quality sensor interaction and system design
for a range of networked systems.

(2) How can different systems of variable quality be supported using
an intelligent, scalable, and open data structure? In this thesis we
create many new tools for crawling and interacting with distributed
data. The implications of this work again reach beyond air quality, in
fields ranging from large-scale data sharing to the Internet of Things.

This thesis (1) answers the two foundational questions outlined
above, and (2) uses the results to build a novel, deployable system.
In it, we test whether machine learning can provide a more nuanced
understanding of when and how inexpensive sensors succeed, to
elevate their trustworthiness. We build a scalable database that sup-
ports scalable learning algorithms, where sensor data of any quality
can co-exist seamlessly. Finally, we demonstrate a system that takes
advantages of these techniques, evokes a fruitful dialog in the citizen
sensing community, and puts that technology in the palm of your
hand.



2. Background and Motivation

If I had an hour to solve a problem and my life depended on it, I’d spend the
first 55 minutes determining the proper question to ask.

- Albert Einstein

There are many issues standing in the way of low-cost, portable,
and effective air quality measurement. While the field is ripe for
innovation, a thorough understanding of the state-of-the-art (and its
limiting factors) is important before attempting to make progress.
The following section is a distillation of advice from industry experts
and thought leaders, who greatly informed the direction of this work.

Air Monitoring

Air Pollutants

Despite the complexities behind sparse air quality measurement
and individual health, there is a plethora of evidence linking small
particulate matter and other pollutants to serious negative health
effects. [1, 2, 3, 4, 5]

Particulate matter is designated according to its size– PM2.5 are par-
ticles with 2.5 micron diameter or less, PM10 has a 10 micron diam-
eter or less, and ultrafine particulate (UFP) are measured in nanome-
ters (equivalent to PM1). These designations are made based on hu-
man physiology. Particles larger than 10 microns are typically filtered
in the nose and throat; below this size, the particles are considered
’respirable’. Particles between 10 and 2.5 microns can usually pene-
trate into the lungs and settle, while particles less than 2.5 microns
tend to pass into the alveoli and into the bloodstream. Nanoparti-



26

cles are so small that some can pass through cell membranes, and
damage other organs throughout the body. Additionally, particulate
deposition is different for these groups– PM10 may settle out of the
air in hours, while the smaller and lighter particles generally stay in
the air until they are washed out with precipitation.

Particulate size distribution is generally viewed as the sum of n log-
normal distributions. [7] Nucleation by-products from engine com-
bustion drives a positively-skewed, log-normal distribution centered
at a few hundred nanometers. [8] Mechanically generated road dust
on paved and unpaved roads generates a negatively-skewed log-
normal particle distributions favoring 10 micron diameters. Pollen
also has a negatively skewed log-normal distribution in the 10-100
micron range. [8] The greatest health risk is associated with the
smallest diameter (often nucleation-based) particulate.

Specific gases have also been linked to health risk, and the United
States Environmental Protection Agency (EPA) has set standards
for five other pollutants– Lead, Nitrogen Oxides, Carbon Monoxide,
Sulphur Dioxide, and Ozone. [9]

The main sources of lead exposure (automotive fuel and paint) have
been heavily regulated over the past several decades in first world
countries. The last industrial lead smelter in the United States shut
down two years ago, and airborne lead exposure in the first world
has largely been eliminated other than from old house paint (which
can aerosolize as houses are retrofitted or torn down.) Airborne lead
is still an issue in developing countries, however, especially near
unregulated smelters that recycle car batteries.

The result of incomplete or high temperature automotive combustion,
Nitrogen Oxides and Carbon Monoxide (as well as Black Carbon,
a major constituent of PM2.5) are common pollutants in the urban
setting. Since the sources of these pollutants are mobile, they often
manifest with complex spatiotemporal dynamics, including tempo-
rary hotspots and/or highly localized areas of high exposure.

Sulfur Dioxide is the result of fossil fuel combustion, largely coal
and heavy oil, and is thus detectable near power plants and other
industrial operations.

Ozone at the earth’s surface is typically the result of Volatile Organic
Compounds (VOCs) reacting with Nitrogen Oxides in the presence
of sunlight. Thus, while vehicle emissions seed the process, ozone



27

concentrations tend to be dependent on sunlight, and therefore more
predictable and less dynamic than CO, NO2, and PM.

EPA standards are set at 75 parts per billion (ppb) average per hour
for SO2, 100 ppb average per hour for NO2, 70 ppb average for 8
hours for Ozone, 9 parts per million (ppm) average for 8 hours for
CO, and annual averages of 0.15 µg/m3 for Pb, 12 µg/m3 for PM2.5,
and 35 µg/m3 for PM10. [9] In the U.S. air pollutants have declined
by over 60% since 1990, however 121 million people still live in coun-
ties were these standards are not met. [9] In the developing world
these standards are rarely met in urban environments.

Sensor Technologies for Particulate Matter

Figure 1: AlphaSense Optical PM2.5
Sensors

There are many sensor modalities for pollution monitoring, with
a handful considered reference grade. For measuring particulate
matter, high quality installations will deploy either a Beta Attenua-
tion Monitor (BAM) or a Tapered Element Oscillating Microbalance
(TEOM) sensor. BAM sensors collect particulate on successive cir-
cular sections of a long filter that is spooled inside the device. Mea-
surements are taken by simply analyzing the beta particle attenuation
through the filter. TEOM sensors draw air through a filter so par-
ticulate deposits on the end of an oscillating cantilever (its resonant
frequency is dependent on its mass). The more mass that is deposited
on the filter, the lower the resonant frequency, which is measured
and used to calculate very accurate particulate levels. Other methods
typically include gravimetric techniques with filters that are analyzed
in a lab environment. [10]

Optical methods for particulate sensing are particularly important
in the mobile context due to their size and robustness. Since particu-
lates are measured in µg/m3, their accuracy depends on assumptions
about airflow through the device, as well as the assumed statistics
of particle size and mass distributions (which can change from lo-
cation to location depending on the local sources and mixtures of
pollutants).

Optical PM sensors typically have similar geometry- a narrowly fo-
cused IR beam is broken by the particles, and the scattered light is
measured by an off-angle photodiode. For cheap sensors such as
smoke alarms, airflow through the device is not tightly controlled
(it may be driven by convection with a small heating element, but it



28

is never consistent), the optics are coarse, and the captured light is
only a loose representation of particulate level. Better sensors use a
more tightly focused beam, as well as a fan to control airflow, and
can count pulses as the beam breaks– thus the length of time the
beam is broken is proportional to particle size. The final and best
type of optical technique uses Mie Scattering, which uses the inten-
sity of scattered light on the photodiode to calculate particle size (a
nonlinear monotonic function with particle size). [11] Using this in-
formation (while observing the duration of a particle in front of the
beam), it is possible to calculate flow rate and corrected for any in-
consistencies between the designed and observed air speed. Accurate
optical variants include Condensation Particle Counters, in which
particle size is increased in a predictable way by condensing vapor
from a working fluid around the particles, making them easier to
count. Electrical mobility sorting based on size/charge of particle
in electrostatic field is also sometimes used in concert with optical
techniques.

Inlets that protect these devices from wind, and thus help to create
predictable airflow, are included on all professional-level equip-
ment. These inlets typically include particle size selectivity. Most
commonly, size selectivity is achieved using inertial techniques (i.e.
impaction or cyclone filtering). Inlets are generally mounted in an
upright position due to particle deposition (so gravity works with the
inlet), and are sometimes heated to evaporate fog.

For cheap, small, or mobile applications, optical sensing is the dom-
inant modality. On the high end (>$15k), handheld systems like the
Grimm Enviro 11E have sophisticated inlets for size selectivity, ad-
vanced optics, and create sheathing airflow out of filtered air, which
helps collimate incoming samples and clean the beam path. These
professional-quality systems have been used in research studies to
evaluate personal exposure, but they do not offer a viable option for
distributed or personal applications.

On the affordable end of the spectrum there are many sensors. Un-
fortunately, independent tests have shown that none of these produce
repeatable, accurate measurements in dynamic, real-world situations.
[6] One in particular worth noting is the Shinyei PPD42NS, a $10
sensor that is widely used and cited as providing high quality re-
sults. [12, 13] It has a small heating element for inducing convective
flow, and coarse optics. Unfortunately, its reputation is based on very
controlled conditions. In EPA-conducted outdoor tests, the Shinyei
demonstrated cross-sensitivity to variations in airflow, temperature,



29

and humidity. [9] The lack of clarity around the application space
in which cheap optical sensors can be effective is unfortunate, and
highlights the importance of testing these sensors in realistic mobile
contexts.

The $300 Dylos seems to be the cheapest optical sensor with a strong
linear relationship to Federal Reference Measurements (at <95%
relative humidity levels) in independent tests. [6] It uses an IR laser
and has a much larger and more sophisticated flow design than its
cheaper counterparts. [14]

The $400 OPC-N2 is an optical particle sensor similar to the Dylos,
but much smaller. It uses a fan to drive a fixed flow rate, and take
advantage of Mie Scattering principles to correct for variations in
flow rate through the device. AlphaSense, its manufacturer, has not
released a full characterization of their design, but preliminary test-
ing in environmental sensing groups at MIT and the South Coast
Air Quality Management District (SCAQMD) have yielded mixed
results– it appears that the OPC-N2 is incapable of sensing particles
below a few hundred nm in diameter, which make up most of the
mass concentration of PM2.5. [15, 16]

Since PM2.5 mass is largely made up of nucleation/combustion
driven particulate, its core component follows a log-normal size
distribution centered in the nm range. While measuring the log
tail can provide some insight into the core of the distribution, tails
from larger particulate like mechanically-created road dust or pollen
(mostly 10-100micron) overlap in the critical 300nm-10micron range
where the OPC-N2 is sensitive. This presents serious challenges
inferring a relationship between what is actually measured in the
300nm-10micron range and PM2.5 levels without extra information.

Sensor Technologies for Gas Sensing

Figure 2: AlphaSense Electrochemical
Gas Sensors

For sensing specific gases, many types of sensors are used. Among
other techniques, spectroscopy, chromatography, and chemilumi-
nescence are very common for professional applications. For mobile
use, Alphasense sensors have emerged with a strong cost to perfor-
mance ratio. Alphasense sells Photoionization Detection based sen-
sors, which work by ionizing gas particles with UV light and sensing
the generated current over a fixed voltage in contact with the air.
They also sell Nondispersive IR sensors, a simple optical absorption



30

method.

For the specific types of gases we’re interested in, electrochemical
techniques are the primary low cost method on the market. The Al-
phaSense version is well-regarded, with ppb sensitivities and a clear
failure condition (instead of the gradual drift you might expect as the
sensor is depleted and dirtied). Electrochemical gas sensors are com-
prised of a working electrode, a reference electrode, and a counter
electrode, all bathed in an electrolyte. The reference electrode is used
to control the voltage at the working electrode, and keep it in a linear
current/voltage regime. The working and counter electrodes promote
inverse oxidation/reduction reactions, combining with the gas to
produce free electrons, and then balancing that first reaction so as not
to deplete or change the available reactants. The resulting current is
proportional to the gas concentration, as long as corrections are ap-
plied for temperature, humidity, and pressure (and adequate time is
allowed for ’warming up’ once the reference electrode is powered on
due to large inter-electrode capacitance). [17] These sensors are gen-
erally well-characterized under stable operating conditions, and have
well understood cross-sensitivities and time-constants associated
with their behavior.

While AlphaSense sensors can be purchased with calibration data,
environmental sensing researchers at MIT have suggested that these
calibrations are generally not accurate, and typically co-locate the
sensors with a Federal Reference sensor for more rigorous calibration
before deploying them elsewhere. [15]

Measurement Strategies and Complications

Historically, the standard measure of air quality has been a sparse
network of fixed stations run by government agencies. These expen-
sive and large stations require careful manual calibration every few
weeks.

While these stations provide accurate data, studies have shown they
either chronically underreport or have no correlation with the per-
sonal exposure of the citizens living near them. [18] Only with so-
phisticated modeling of elevation, geography, ambient conditions,
wind velocity, and land use can these data be tied to exposure else-
where in a city, and these models must be evaluated on a case-by-
case and pollutant-by-pollutant basis.



31

New techniques are emerging to map and model a city using a small
number of medium quality, mobile sensors. [19] Stationary, high
quality sensors play an important role in calibrating these systems
on-the-fly, but these methods have shown much better predictive
power for mapping cities in higher spatial resolutions. However, their
predictive power is still best on timescales of years and weeks, and
starts to break down as they move towards days and hours.

Models on these timescales and resolutions are useful for under-
standing general trends in exposure for a city, as well as identifying
and eliminating pollution sources, hotspots of high exposure, and
issues with urban planning. However, even these mobile techniques
for map generation are limited in their ability to predict personal
exposure with high spatiotemporal resolution.

Personal exposure is so difficult to measure because pollutant con-
centrations can vary dynamically. For certain conditions researchers
have modeled this complex behavior, and thanks to expensive portable
sensors there have been several studies to corroborate their findings.
One such dynamic system that has been analyzed extensively is the
’urban canyon’– a street with two tall buildings on either side that
creates several interacting, swirling vortices [20]

Measurements have shown CO and UFP concentrations doubling on
one side of the street relative to the other in an urban canyon, mea-
sured at the same time of day. [21] This variability has been demon-
strated time and again– one study showed complex relationships
between different pollutants measured in the center of the street ver-
sus the sidewalk. [22] Different corners of the same intersection can
also vary tremendously. [23] Even walking roadside vs. building-side
on the same sidewalk has been linked to significant differences in
pollution exposure level. [24]

This is all to say that spatial variation is extremely high in some situ-
ations. Concentrations can change drastically over just a few meters.
For accurate personal exposure monitoring, best practice is to sample
air within 30cm of the mouth and nose. [18, 25] While some of these
spatial phenomena may fit an urban canyon model, and some may
be modeled accurately with standard dispersion models, pollutant
levels in general are hard to predict with any single technique (es-
pecially to within a few meters). [26] Given the current state of air
pollution modeling, it is extremely difficult to predict spatial varia-
tion at a scale relevant to personal health outcomes without direct
measurements. [18, 25]



32

Temporal variation is equally difficult to monitor. [27, 28] Studies
at traffic intersections have shown that regular, tenfold increases in
pollutant concentration can occur over one second intervals. [29, 30]
This staggering variation is averaged out even with the some of the
best ’real-time’ techniques– fifteen second integration could miss an
entire elevated concentration event. Peak exposure levels may have
important health implications, and transient events may account for
the majority of urban exposure. [27, 28, 29, 30]

Given the tremendous spatiotemporal variation in pollution, fine-
grained and distributed sampling in the lived environment seems
to be the only viable path to accurate personal exposure data. In
dynamic environments, personal and mobile sensors offer the most
direct path to these data. While a dense fixed sensor network could
provide similar insights, it would require many, intelligently placed
devices to recreate the spatiotemporal resolution required to match
the exposure estimates of a few personal sensors. Verifying the pre-
dictive radius of a fixed sensor in a complex, urban environment is
also non-trivial. Personal, mobile sensing bypasses these complica-
tions.

With enough adoption, portable sensing could improve the collection
and prediction of city-wide pollution mapping traditionally asso-
ciated with fixed sensor installations. Eventually, distributed (and
likely mobile) sensor data may even enable accurate path-based per-
sonal exposure modeling (statistically relevant on the order of meters
and minutes), since the data is collected in the real microenviron-
ments that dominate their exposure. Accounting for this otherwise
highly specific spatiotemporal resolution would be difficult with any
alternative method (day-level and 100 m2 resolution is the best we see
with predictive models right now). As sensors increases in accuracy
and drops in cost, distributed sensing will usher in a new way of
understanding the pollution landscape and our exposure to it.

Sensor Networks

Air Quality Sensor Networks

It is not uncommon to see publications describing cheap and portable
smart-phone based air quality projects. [31, 32] In most cases, these
publications focus on system design, and produce thought-provoking



33

work on the user-interface. [33] In cases where technologists explore
new sensor design, it is rare they achieve compelling improvements.
The past 20 years has seen a lot of incremental optimization in the
most promising sensing modalities. Few research labs are positioned
to push the state-of-the-art further by simply re-applying the same
core physics without a new fundamental insight.

Outside of phone applications, true system-level research in the air
quality space is uncommon. Most air quality networks use the same
topology– one type of sensor device with standard, centralized data
collection methods. The exception to this rule comes out of ETH
Zurich’s OpenSense project, where mobile sensors check their cal-
ibration as they pass higher-quality fixed sensors. [34] OpenSense
has also pioneered methods for multi-hop mobile sensor calibration.
Their work sets the standard for exploratory new air quality sensor
network topologies.

In the consumer space, many projects and devices are being launched.
Unfortunately, most devices do not stand up to scrutiny, and rarely
do they offer technical innovation. None of these devices has suc-
ceeded at sustaining momentum with its adopters. SmartCitizen is
an example– after a successful 2014 kickstarter with 600 backers and
$68k raised, the SmartCitizen online network currently shows no ac-
tive devices (despite 618 having been registered). [35] The constant
barrage of ’new’ monitoring devices– without accountability, without
rigorous data-collection, and without real-world use-cases– saturates
and dilutes consumer interest in these important issues.

Citizens aren’t the only ones purchasing air quality sensor de-
vices. Many cities are installing high-density pollution monitoring
networks– in some cases, only later realizing that the data is not
of sufficient quality to be of any use. London (quite publicly) re-
cently released a network of GPS-tracked, tweeting pigeons with
NO2 sensor backpacks– while driven by a marketing firm as a (very
successful) publicity campaign, no data has confirmed the value of
this mediagenic approach. [36]

The EPA publicly states that distributed, cheap sensing technology
will be a cornerstone of their future success. [37] As part of the effort
to engage with active citizens and communities, the EPA measures
and publishes data about low cost consumer devices. [6] Currently
this is done by co-locating the consumer device with a Federal Refer-
ence Measurement (FRM) device outside for several months (usually
through a change of seasons). This validation is not standardized



34

or rigorously defined in length, season, analysis, or in number of
devices tested. Generally, the end result is a simple regression com-
parison (produced by hand), and a single designation for the sensor
(i.e. ’good’ or ’bad’). Other organizations do similar co-location ex-
periments (like SCAQMD) in very different climates using different
standards. [38]

Large Scale Data Sharing

The air quality research community is actively looking for solutions
to facilitate inter-organization data-sharing, so that large scale col-
laboration can become more commonplace. They are also actively
working to educate, involve, and benefit from the citizen sensing
movement. There are many open questions around how to structure
an ecosystem with variable quality data, how to define data stan-
dards, and how data should be hosted.

The most common solution for large-scale data sharing is to construct
a centralized ’cloud’ database with strict data standards and a strict
ontology. Generally, users prepare their data to meet the standard,
and then push their data to the database using some basic tools.
As the most common structure, there are options that have library
support for various file formats and hardware platforms. Examples
include data.sparkfun.com (which integrates directly with Arduino
shields) or plenar.io (which has easy csv upload and flexible data
selection/access features).

ChainAPI

When it comes to robust solutions for large scale sensor networks
that directly feed into a database, the possible options are less well-
defined. An ideal ecosystem would allow large scale networks to
interact seamlessly, while still allowing freedom in ontology and dis-
tributed hosting (similar to the World Wide Web). While there are
several solutions starting to appear for Internet of Things applica-
tions (the so called ’Web of Things’), many are over-specified, and
up until now the practical result has been for industry players to silo
their hardware, their data, and their applications. Industry consortia
are starting to address these problems, but the issues are currently
unresolved.



35

ChainAPI [39, 40] is a thin, HAL- and JSON-based hypermedia so-
lution for creating distributed, browsable data resources. It dictates
enough structure to make resources easily linkable, new ontological
relationships easily definable, and datasets easily accessible, search-
able, and streamable. It leaves open the questions of ontology and
backend database structure.

ChainAPI has been successfully used for a large-scale sensor eco-
logical installation in Southern Massachusetts. [41] It serves as the
backbone for many interesting data visualizations, audio mappings,
sensor browsers, and future-looking tools. It provides extensible an-
swers to many questions facing the world of large scale, distributed
sensor installations and their associated data.

Machine Learning

Machine learning provides a way to design algorithms that learn and
improve as more data is provided. These techniques have been ap-
plied to sensor data in a variety of forms. Examples range from pre-
dicting the number of people in a closed space by looking at changes
in distributed sensor readings (i.e. temperature, humidity, light,
and pressure), to predicting soil moisture based on remote sensing
techniques (i.e. vegetation index and light backscatter). [42, 43] One
notable research project used HVAC sensor data, both analytically
and redundantly, to predict and verify when a sensor in the network
has failed and automatically replace its unreliable data. [44]

Generally, these examples use supervised learning approaches with
some form of cross-validation to validate success. While each uses
a different core algorithm (and there is room to test and apply all of
them to the air quality space), one worth mentioning is the logistic
regression. Logistic regression is frequently used to predict engineer-
ing failure of products or systems. [45] It can be applied as a binary
classifier (i.e., ’Is this sensor failing?’), as well as give a probability for
each outcome (75% likey for ’yes’ and 25% likely for ’no’).

Motivation

Air pollution poses a risk to the health of people around the world.
While standardized measurement techniques are highly accurate,



36

they are also extremely expensive and historically only limited to a
number of stationary sites. These stationary sensors do not capture
meaningful information about a citizen’s personal exposure– the spa-
tiotemporal variations of pollution concentration are too complex and
too narrowly resolved to be captured with a single, distant sensor.

For accurate personal monitoring, wearable, mobile sensing offers
a very attractive approach. Sensors do exist that can measure per-
sonal exposure, but there is a tight relationship between cost and
accuracy– most are cheap and inaccurate. While elusive, portable
and affordable sensing has the potential to offer powerful insights for
both individuals and research organizations.

The lack of cheap solutions is not due to a lack of understanding.
The core device physics of most sensors have been well-optimized
over several decades, and the sophistication underlying reference
level equipment is truly remarkable. Affordable sensors are starting
to mirror the core principles of instrument-grade devices. Unfor-
tunately, there are systematic failures in low-cost systems that are
fundamental to the underlying sensor modality.

Optical sensors, for instance, require precision optics, heated inlets,
flow control, and size-selective filtration. Solutions to these problems
require extra power, extra size, or extra cost (and frequently all three).
Addressing these problems likely results in a sensor that is neither
cheap nor portable. Electrochemical gas sensors require a clean,
precision doping process, a statistically-defined minimal exposed
surface area, and compensation for flow rate, pressure, temperature,
humidity, and electrical noise. The physics limit how small they can
be, and the market limits how much cost can be driven out of the
manufacturing process.

There are two main take-aways from this section– the first is that
attempting to incrementally improve devices by re-exploring their
core physics is a difficult proposition. The core physics are well-
understood and companies have been optimizing them successfully
for decades. The first order problems with cheap sensors are not

with the core device principles, but with well-understood failure
modes (like flow control, fog, temperature dependence, or chemical
cross-sensitivity).

Since the core physics underlying cheap commercial sensors are
approaching a very high quality, we can assume that inaccuracy
is likely the result of systemic, predictable failures. If there was a



37

single point of failure (like an optical sensor that is reliable except
when fog is present), it would be trivial to predict when the sensor
data is reliable based on fog measurements. In real-world scenarios,
however, multiple failure modes compound and obfuscate these
underlying predictive patterns.

If cheap sensors are entering a quality regime where failure is
increasingly predictable, it leads us to machine learning as a poten-
tially powerful mechanism to improve reliability. Machine learning
is perfectly suited to tease out these complicated underlying relation-
ships. Instead of the common approach of improving sensor perfor-
mance, the research suggests that characterizing and predicting sensor
reliability in a nuanced way is novel, necessary, and potentially revo-
lutionary.

In many cases, first-order predictions may work well to predict sen-
sor accuracy. Gas sensors break in known ways and are specified for
known operating ranges. Simple monitoring of temperature/humid-
ity/pressure exposure, its air-flow, and gas sensors of cross-sensitive
pollutants could provide extremely useful insight.

Second order insights are perhaps more interesting. For instance, the
OPC-N2 particle counter is likely to be confounded by road dust or
pollen. What if we could loosely approximate road dust exposure
based on the user’s location relative to a road, traffic patterns, the
time of day, and the wind? What if we could predict O3 measure-
ment reliability based on the underlying drivers– NO2, sunlight, and
cloud cover? In this thesis, we explore both first-order and second-
order insights using machine learning techniques.

Simple machine learning analysis could also provide an objective
measure of sensor quality. How well machine learning can predict a
sensor’s behavior is a nuanced way to measure its repeatability. Sen-
sors that fail randomly instead of predictably are inferior in design
and construction.

For any of this to work, we need to compare our low-cost sensor
against a high quality reference, so we can learn when it is providing
spurious data, and what conditions may be indicative of that error.
There is precedent for air quality network infrastructure that com-
pares cheaper mobile sensors with a higher quality reference, but
until now this has only been done as a basic calibration step. What
we are proposing is the first self-correcting air quality system.



38

In order to build such a system, we require a backend solution that
can automatically compare EPA data to a cheaper network instal-
lation. ChainAPI is well suited for this task, and in the process of
building this infrastructure, we examine and address some of the
biggest issues facing air quality data sharing, ecosystem building,
and data interaction. We also create an infrastructure that may be
used to automatically measure and characterize consumer device
quality, in a very nuanced, climate- and geography- specific way.

Finally, we believe such a system has the ability to contribute to and
provoke a more nuanced, informed dialog in the citizen sensing com-
munity. We propose the first device designed with the assumption
that its data won’t be consistently reliable, that we need to predict when
it is useful and when it is not. Inherent in the design is the sugges-
tion that the a sensor’s success is complex, based on a variety of
factors. This provocation could help inform and educate new users–
cutting through noise instead of adding to it.

There are many interesting problems currently facing the air quality
community. We believe a machine learning approach to predict-
ing sensor accuracy could improve the reliability of cheap sensors,
pushing the state-of-the-art forward. Validating data from affordable
sensors would opening up a world of reliable, distributed data to the
research community. In the process of testing this approach, we hope
to build scalable solutions for data sharing and network interaction
between affordable and expensive sensors. We are also engaging the
citizen science and research communities with a new perspective on
how to approach scalable, affordable sensing.



3. Related Work

In this section we consider past air quality work in the context of
mobile or personal sensing. Additionally, we explore several of the
cutting edge solutions for storing, manipulating, and displaying data
of this type.

Air Quality

Safecast

Safecast [46] is an organization created in response to the Fukushima
disaster to crowd-source radiation measurements using open-source
GPS-tracked Geiger counters. They have succeeded at creating and
publishing the most detailed radiation maps in the world, and are
now looking to apply their expertise to air quality.

We are already closely linked with the Safecast team, which has been
working on open data and open hardware air quality sensing for
about a year. They’ve just finished an alpha version of a stationary air
quality monitor.

Aclima/Google

Aclima [47] is a San Francisco startup specializing in environmental
sensor networks. Last year, Google and Aclima started a mobile, car
mounted air quality project. However, their algorithms and hardware
have not been shared and they appear to want to control all the data
they generate. The speculation is that they are using a quite expen-
sive setup in the back of the car, slowly drawing in air over time.



40

Copenhagen Wheel Project

Out of the MIT SENSEable lab, the Copenhagen wheel [48] is mounted
on a bike wheel to assist your pedaling, lock your bike, and capture
data about air quality. The original project was unveiled in 2009 and
subsequently licensed to a Cambridge Area startup (Superpedes-
trian). It is currently available for pre-order. Air quality is a tertiary
feature of their project, and no hardware specs or details about what
they are planning to monitor have been released.

OpenSense

An ETH based project, is the current world leader in mobile air qual-
ity sensor networks, with the first practical distributed mobile sens-
ing platform using large devices mounted on the Zurich public tram
system. [34] The OpenSense team has published many excellent ar-
ticles that address some of the fundamental problems in low-cost,
mobile air quality sensing. They’ve laid the groundwork for dealing
with gas sensor calibration (particularly with multi-hop calibration
techniques), as well as advancing the state of the art in Land Use
Regression modeling based on sparse, real-time, mobile, distributed
measurement. However, their resolution has only been tested up to
12 hour, 100m x 100m predictions (with accuracy much less than
weekly/yearly predictions), and their sensors are large and run off
of power from the trams they are mounted on. Their first attempt at
truly personal sensing was a recent low-cost phone-enabled ozone
sensor, which proved viable. [49] However, one of their assumptions
for this device’s success was that ozone has limited and predictable
spatiotemporal variation (which is true, much less than other pollu-
tants). Their preliminary tests with this sensor also revealed signifi-
cant errors for high pollution levels when under airflow. [19, 50, 51]

TRUSS

Similar to OpenSense, the TRUSS (Tracking Risk with Ubiquitous
Smart Sensing) project from the Media Lab’s Responsive Environ-
ments group similarly blends high-power, fixed sensors with low-
power, wearable nodes to provide real-time sensor fusion and insight.
[52] In particular, this project examined and compared multiple air
quality sensors to predict harmful conditions– however, the goal of



41

this work was to detect coarse, major risk instead of precise, ambient
exposure.

Cheap Sensor Development and Testing Groups

There are organizations (such as South Coast Air Quality Manage-
ment District [SCAQMD], the UK’s National Physical Laboratory,
and the EPA) that are testing and characterizing cheap optical PM
sensors in real-world scenarios. There is also an active research com-
munity around developing MEMS PM sensors (using tech like FBAR,
or Film Bulk Acoustic Resonators). These groups are essential for
independently testing the claims of new products, and provide im-
portant insight into the trends with respect to the success and failure
of new sensor technology.

Other

There are many other projects that appear in the air quality space,
each with some unique take on affordable, distributed air quality.
Most of the following projects are successful in one or more aspects
of their system design, but do not innovate with their core sensor
physics or algorithm.

These projects include MIT’s stationary/expensive Clarity sensing
project, [53] the independent and nicely designed tricorder sensor
platform, [54] the innovative Propeller Health project that extrap-
olates pollution data from asthmatic inhaler usage, [55] the open
source and mobile UPOD project, [56] the mobile Italian uSense
project, [57] the ’wearable’ AirBeam kickstarter project, [58] the
Boston based startup Elm that translates their distributed air qual-
ity data into usable advice (and has an open invitation on their site
to hook your sensor into their network), [59] the Israeli BreezoMeter
startup that extrapolates street-level/high resolution air quality data
(presumably from wind patterns and known reference data), [60] the
London-based company cleanSpace that provides air quality maps
and incentivizes air quality friendly commuting, [61] the startups
Clarity and Tzoa that are selling versions of the ’world’s smallest’
PM2.5 wearable, [62, 63] and the startup uHoo which is building a
home air quality monitor. [64] Other slightly less interesting, but still
notable, include a handful of other hardware/commercial projects
(the Air Quality Egg, [65] CMU’s Speck, [66] Atmotube, [67] Air-



42

boxLab, [68] SmartCitizen [35]) and independent research like the
French citizenAir project [69] and DIY Public Labs work. [70] New
projects in this space appear on a regular basis.

Data Sharing Solutions

There are many options for data-sharing, particularly when exploring
options that have a centralized entrypoint. Open source tools like
Django [71] allow system administrators to easily spin up their own
database solutions and create front-end tools, while services like
plenar.io offer simple, managed solutions for data upload, display,
and download.

An interesting open-source solution is Apache Hadoop, [72] which
is a database back-end that can handle distributed storage and dis-
tributed processing for very large datasets. It can run on Amazon
Web Services or Google Cloud, and has been used by many large
companies. While interesting, it is not designed for easy input/out-
put of data, but instead for managing and parallelizing computation
on large datasets using Java (where everything is done in the cloud).
This solution is likely over-technical and over-specified for the air
quality use case.

The Semantic Web - RDF, HAL, and JSON-LD

An alternative, simple, distributed solution comes in the form of
the semantic web. Instead of thinking of our data as separate from
our devices– where researchers must pull data by hand, process it,
and then upload it to a repository– it makes more sense to take an
’Internet of Things’ approach. The advantages of this system are
many– it provides transparency to the measurement technique (data
is associated with the device, and metadata about the device, that
uploaded it) as well as to the processing steps (data is uploaded in
a raw form, and processed in the web). It also provides an intuitive,
physical hierarchy for organizing and linking device and sensor
data resources together. With proper system design, the researcher
should not have to manually upload anything– they should be able
to automatically pull all of the latest data (including automatically
calibrated/processed data) from the database without ever manually
pushing it there in the first place.



43

This type of sensor network design is not new. Most large sensor
network installations automatically push their data up to a central
server. By adding a semantic web layer on top of these servers, it
is simple to connect devices and sensors in a much larger ’Web of
Things’. Many standards for achieving this have been proposed over
recent years.

Resource Description Format (RDF) is one of the most noteworthy
foundations in semantic web thinking. [73] It represents a data model
specification– every web resource (for instance, a device or a sensor
object stored at a given URI)– has defined relationships through
’triples’ of the form subject-predicate-object. An example would
be ’device 1 includes sensor 5’, which would be represented with
URIs (http://device/1, http://relation/includes, http://sensor/5).
This creates a labeled, directed multi-graph data model. It has been
adapted to many standards and syntaxes like XML, and extended in
standards like OWL (Web Ontology Language) or Turtle (Terse RDF
Triple Language). The syntactic extension of this format in JSON –
the current lingua franca of web data– is known as JSON-LD, and has
been advocated for by Tim Berners-Lee (inventor of the World Wide
Web). [74]

HAL, or Hypertext Application Language, is another hyperme-
dia semantic web data model with XML and JSON formats. [75] It
similarly defines relations to other resources using a shared URI,
so ontologies can be easily added and extended. It is simpler than
JSON-LD, with each resource limited to its attributes and its external
link relations. HAL supports simple embedded resources and URI
prefixing.

IoTivity and AllJoyn

Industry consortia are starting to take steps to build their own ’Web
of Things’ using the internet backbone. The two largest are IoTivity–
a project by the Linux Foundation and Samsung– and Qualcomm’s
AllJoyn. [76, 77] They support low level protocols like CoAP, large
APIs for interfacing with connected devices, and end-to-end de-
vice discovery and connection solutions. While these tools may gain
prominence over the next several years, for now they are in their
infancy, and looking to address more fundamental infrastructure/-
connectivity problems (focusing more on real-time queries and con-
nectivity rather than data storage, management, and sharing).



44

ChainAPI and TidMarsh

ChainAPI [39, 40] is a standard for data sharing based on HAL and
JSON developed in the Responsive Environments group at the MIT
Media Lab. It does not attempt to specify end-to-end connectivity,
nor does it force any specific implementation or ontology– it sim-
ply wraps the HAL semantic web specification with common-sense
design principles to make interoperability and data access simple
and intuitive. This level of specificity enables a very low barrier to
entry and very flexible use, while still providing enough structure to
support a large, coherent ecosystem.

ChainAPI has been tested and used in the MIT Media Lab’s Tid-
Marsh project to store and expose ecological data from hundreds of
local sensors over dozens of devices. This implementation includes a
browsable web front-end, and several forward looking applications
that take advantage of ChainAPI’s streamability– a live, constantly
updating virtual representation of the sensed environment is avail-
able at tidmarsh.media.mit.edu. Electronic music compositions have
been written that stream and use live data from the Marsh. [78] Sev-
eral elaborate data visualization scripts have also been written on top
of ChainAPI. [79]

ChainAPI has a low barrier to entry, an extensible ontology, provides
easy access to streamable data, and can quickly scale in a distributed
manner. It is as simple as possible without sacrificing functionality.



4. Overview of Design and Contributions

The are three main goals with the learnAir project. The first is (1) to
evaluate the usefulness and feasibility of applying machine learning
algorithms to air quality sensor networks. Specifically, this means
testing whether we can predict when a low-cost sensor is giving reli-
able data based on the conditions under which it is measuring. The
second goal is (2) to prototype a data solution that addresses the
needs of the air quality sensing community– particularly, the cre-
ation of an ecosystem that supports the needs of participants from
high-end research facilities to lower-accuracy citizen projects– and
allows seamless, easy interaction between them. It also must support
the machine learning algorithms validated as part of our first goal in
a scalable, automatic way (leveraging on-board, contextual sensors
like temperature to help ground the data from its own air quality
sensors). Finally, we want (3) to prototype an actual, handheld sys-
tem that uses the algorithms from (1) and the database from (2) to
realize a deployable, useful mobile sensor system that demonstrates
the concepts and ideas put forth in this thesis. We believe this device
will serve as a powerful rhetorical tool and push the dialog forward
in citizen sensing communities. We also believe this system will give
improved data reliability and as a result a more accurate estimate
of personal pollution exposure compared to comparably priced and
spec’ed systems.

The final system will enable a sensor to learn about itself when it is
near a higher quality reference. It will apply that knowledge to new
measurements made under new conditions, even as it moves away
from the reference system. Every measurement the system makes
will be accompanied by a simple prediction– was this measurement
accurate or not? Every prediction will also come with an estimate
of certainty– how confident are we this prediction is accurate? As
more sensors of the same make and model are added to the network,
predictions will improve and prior predictions can be revised.



46

Machine Learning Validation

Sensor technology– especially in the air quality space– is getting
cheaper and more reliable. For the first time, well-respected sensors
are starting to appear in the $100 range. However, there are limi-
tations on what is possible with small, affordable technology. For
example, electrochemical gas sensors break down in known ways–
their reactions are temperature, pressure, and humidity dependent,
in some cases they are cross-sensitive to other gases, and their reac-
tions have time-constants and noise susceptibility based on electrode
size and exposure area. Optical particulate sensors are frequently
designed to mitigate external effects by applying (expensive) precise
air flow control, heated inlets to eliminate fog, size-selective particle
filtering, and advanced optics.

Sensors that break down in systemic ways may provide very reliable
information under certain conditions. While it may be obvious if a
sensor has a single, well-understood failure mode (for instance, an
optical sensor that is very reliable unless there is fog), compounded
failure modes are more common and more difficult to infer. By ap-
plying machine learning to this problem, we can automatically char-
acterize which and how strongly underlying features are predictive
of systematic errors.

Machine learning has a strong likelihood for providing insight into
sensor reliability assuming the sensors are not spurious: that their
failures come predictably. This assumption has likely not been true
in the past, but the evidence suggests that we’ve entered into a new
era of cheap air quality sensing– where some devices are based on
trustworthy, strong designs, but cost constraints have prevented
the inclusion of a controlled environment typical for instrument
level devices. In these cases, we can measure the conditions instead
of controlling them, and make an educated prediction about the
reliability of any measurement.

To test this theory, we built a stationary device that can measure am-
bient conditions (temperature, light, humidity, wind) and included
a range of cheap air quality sensors for CO, NO2, O3, and partic-
ulate. This sensor is called ’learnAir V1’. This sensor was installed
for 2 months at a Mass Department of Environmental Protection
(MassDEP) measurement site next to the inlet for reference EPA mea-
surement equipment. The data collected from our measurements
were compared to the EPA reference data as a ’ground truth’ refer-



47

ence, to characterize when the sensors were reading accurately and
when they weren’t. We then used machine learning techniques to
predict when the sensor was giving accurate readings or not. Using
cross-validation techniques (splitting our collected data into a train-
ing set and a testing set), it is possible to characterize how well our
algorithms predict sensor accuracy. See Chapter 5 for a description
of the device and MassDEP reference hardware, and Chapter 7 for
an in-depth analysis of the machine learning techniques and cross-
validation results.

ChainAPI Instance and Tools

The air quality research community is actively working to mitigate
the complications involved with inter-organization data-sharing.
Furthermore, they are interested and actively engaged in questions
around the citizen sensing movement– how should they inform and
involve citizens in the air quality monitoring community? How
should they validate cheap consumer devices? Is there a research
use for the lower-quality data gathered from these networks, and
how can they access and interact with it?

Another contribution of this thesis is to build and adapt an exam-
ple of ChainAPI– a hypermedia data-sharing framework– for use
with air quality data. ChainAPI offers many interesting advantages
for sensor deployments as a thin, distributed hypermedia layer for
linking data resources. It provides unique advantages for a diverse,
distributed ecosystem where different sub-communities can co-exist.

In addition to creating a new ontology for air quality resources and
building a development ChainAPI server, several new tools are neces-
sary to interact with the ChainAPI air quality ecosystem. The infras-
tructure built for this thesis provides automatic resource discovery
and dataset creation– so researchers can automatically find and inter-
act with new datasets based on the type of data they are interested
in working with, without a priori knowledge of where to look for that
data. Its tools provides separation of concerns, so that raw data and
data processing scripts are separated, instead of pre-processing oc-
curring in an opaque way before data upload. Its processing scripts–
that crawl through ChainAPI and update data– offer transparency to
data quality and data manipulation.

This topology allows experts with certain sensors or devices to create,



48

own, and update the processing elements for their technologies,
and provide automatic, high-quality processing to novice users. It
provides the opportunity to create scripts that crawl through datasets
looking for anomalies, out-of-spec operating characteristics, or out-
of-service parts, and warn the device owners or data users. Finally,
it offers the ability to create learning algorithms that automatically
improve as more data is added to the ChainAPI ecosystem.

This contribution is an example of how ChainAPI could be adapted
for air quality data sharing. It includes a new ontology based on the
needs of the air quality community, and a large suite of tools that
make ChainAPI a scalable, powerful tool for dynamic, growing data
ecosystems. It also forms the basis for a truly automatic implemen-
tation of our machine learning algorithms. See Chapter 6 for an in
depth discussion of the contributions around ChainAPI.

A Provocative Example

Based on the infrastructure developed with ChainAPI and the algo-
rithms tested at the EPA site, the final goal of the project is to build a
fully functional, portable device that integrates all of these features.
There are several motivations for this: (1) as a rhetorical tool that can
engage the citizen sensing community in a dialog about sensor data
quality and validation, (2) as a means for deploying successful results
from the previous sections as a best-in-class, trustworthy, manufac-
turable device, and (3) as a tool and platform for future testing of
mobile use cases without having to do extensive data processing
and manipulation by hand. Once this system is built, the machine
learning results and comparisons can be generated easily and auto-
matically as long as the data is available in the ChainAPI ecosystem.

Two portable prototypes were designed and built as part of this
thesis– called ’learnAir V2’ and ’learnAir V3’. Both are battery pow-
ered, hand-held devices that integrate AlphaSense electrochemical
and particulate sensors. Both connect to a smartphone over BLE and
push their data up to ChainAPI using GPS data from the phone ap-
plication. Both monitor ambient conditions of their measurements
(vibration, temperature, humidity, light, wind) to help predict their
accuracy.

The two versions are very similar– the main difference is the core
microcontroller. Version 2 is based on the Atmel ATmega32u4, and



49

was programmed using the Arduino environment. Version 3 is based
on the lower-power, fully-featured STMicro STM32L152, which re-
quires a more complicated build process, and comes with less library
support. There are cost and power savings associated with Version
3 (making it more ’production-worthy’), but functionally they are
nearly identical solutions. See Chapter 5 for an in-depth discussion of
this hardware.





5. Hardware Design and Analysis

The vision of learnAir is to create a high-quality, affordable, and
portable air quality monitor that (1) measures several pollutants, (2)
measures ambient conditions like temperature, humidity, and light
level, and (3) connects to a smartphone application that can display
results, can send timestamp and geotagged data to the cloud, and can
receive and display a prediction of measurement certainty based on
machine learning applied to the data in the cloud.

Three learnAir devices have been built and tested. The first (learnAir
V1) is not portable, internet-connected, or battery powered– it was
solely used to collect sensor data that could be compared against
higher quality MassDEP data for testing the feasibility and usefulness
of predictive machine learning techniques. This device was installed
on a MassDEP (Department of Environmental Protection) monitoring
site for 59 days– from April 15th to June 13th 2016.

The second and third devices were designed to take the information
gleaned from learnAir V1 and put it in a cheap, portable, smart-
phone connected package. The main circuit boards for LearnAir V2
and V3 were designed to match the size of the AlphaSense Ana-
log Front End conditioning board– a reasonably priced production
board with three electrochemical gas sensors that has gained a strong
reputation in the pollution sensing community. These boards are
BLE-enabled, and connect to two custom daughter boards for mon-
itoring temperature, humidity, light level, UV exposure, and 3-axis
wind speed.

The two boards share power circuitry and most peripherals– their
central distinction is the main microcontroller. LearnAir V2 is a fully
functioning board based on the Atmel ATmega32u4, which requires
an external RTC (real-time clock). Firmware was written using a
modified version of the Arduino codebase. The third version is based



52

on the STM32L152– a more sophisticated, production-level micropro-
cessor, with more optimization for low-power states, more SD card
read/write support features, and an onboard RTC. This third revision
was also designed with a significantly smaller, soon-to-be available
MEMS pressure sensor, which could reduce the volume occupied
by the wind sensing module 50-fold (a large space savings from the
current, large volume of 20mm x 60mm x 22mm).

The boards connect to a cross-platform smartphone application
written in Javascript using Phonegap, a library that will compile
javascript as webviews into iOS and Android applications. It has plu-
gins to access the phone GPS, and a simple D3.js library was used
for plotting. ChainAPI- our back-end solution- supports websocket
connections and a subscription model to push data to the cloud and
receive the latest predictions.

LearnAir Version 1

LearnAir V1 was created to collect data with a variety of cheaper air
quality sensors at a MassDEP monitoring site, to test our ability to
predict a sensor’s accuracy with machine learning by comparing it to
a high quality reference. The final box is 200mm x 120mm x 75mm
( 8 x 5 x 3in), and houses two main subsystems.

Figure 3: LearnAir Sensor installed at
MassDEP site, opened

The first sub-system is an off-the-shelf air quality monitoring sys-
tem called the SmartCitizen Kit (frequently abbreviated SCK). [35]
The SmartCitizen Kit is Arduino-based (using the ATmega32u4),
so custom code can easily be written and applied to the hardware.
This system was used in an offline data-logging mode, with raw data
streams stored to the onboard micro-SD card for later retrieval.

The SmartCitizen Kit includes several important sensors for our
machine learning test. It has a DS1307 real-time clock for timestamp-
ing data and sample timing, a MicroSD slot for saving CSV files, a
ROHM BH1730FVC I2C light sensor to monitor ambient light levels,
a PUI POM-3044P-R electret microphone for monitoring ambient
noise level, and a Sensirion SHT21 I2C temperature and humidity
sensor. Most importantly, it has an E2V MiCS-4514 CO and NO2
sensor. This is a $10, MEMS sensor– one of the cheapest air quality
sensors available. It works on a Reduction/Oxidation principle, and
has small internal heating elements. It claims a 1-1000 ppm measure-
ment range for CO and a 0.05-10ppm measurement range for NO2,



53

Figure 4: LearnAir Sensor installed at
MassDEP site

and omits any information about reaction speed or cross-sensitivity
in the datasheet.

The SmartCitizen Kit was mounted to the front of the case, with a
small hole to expose the relevant sensors to the air. Every hole in
the case was gasketed with silicone, and the front of the case was
mounted face down to minimize rain exposure. Furthermore, a clear-
acrylic, overlapping, slotted cover was designed to further protect the
exposed sensing elements from rain and direct exposure.

Despite the effort to protect the circuitry, the SmartCitizen Kit cor-
roded severely in our first outdoor test. A new kit was installed, this
time with a layer of conformal coating added to prevent corrosion
(Figure 5). This addition prevented further corrosion for the remain-
der of the two month installation.

Figure 5: Corroded SmartCitizen Kit on
the right, Conformal-coated new kit on
the left. Relevant sensors on the new kit
were taped off before coating to prevent
contamination

Besides the SmartCitizen Kit, a custom Arduino-based sub-system is
part of the platform. This system is based on an Arduino Leonardo
board (Atmel ATmega32u4) with an Adafruit data-logging shield
(which includes an SD card slot and a Maxim DS1307 RTC for
timestamping– the same RTC as the SmartCitizen).

Three main sensor sub-systems were connected to this Arduino using



54

a secondary prototyping board. First, a $10 Sharp GP2Y1010AU0F
Optical Dust sensor was connected. This sensor requires an external
charging circuit to store energy for a narrow IR light pulse that is
used to detect scattering. These sensors have a reasonable reputation,
and have shown good correlation with better quality sensors under
controlled conditions indoors. [12, 13] In real-world situations, they
are unreliable.

Secondly, an AlphaSense Analog Front End Board was connected.
This board supports three AlphaSense electrochemical gas sensors,
which each have a Working and Auxiliary Electrode measurement.
Additionally, this board provides an onboard temperature measure-
ment for sensor calibration. All of these signals were multiplexed
through an external TI CD54HC4051e multiplexer before connection
to the Arduino 10-bit ADC. AlphaSense sensors are well-reputed,
mid-level sensors– they typically cost $60-100 each, with the support
circuit adding an additional $150 in cost. These sensors have t90 re-
sponse times of 10 ppm in 20 seconds for CO, 1 ppm in 30 seconds
for NO2, and 100 ppb in 15 seconds for O3. Cross-sensitivity of the
O3 sensors to NO2 is quite high (70-120% measured with NO2 levels
of 5ppm), as well as vice versa. (The NO2 sensor picks up 30-60% of
O3 at 100ppm.) Other cross-sensitivities are well-documented and
much smaller. These sensors sport very low monitoring thresholds,
well-characterized calibrations for electrolyte depletion and tem-
perature dependence, and specified operating ranges for pressure,
temperature, and humidity.

Finally, an Omron D6F-PH differential pressure sensor was included
as a cheap, experimental way to measure airflow and wind. This
pressure sensor has two outlets- one was left vented into the box,
and one was connected through a tube to the surface of the device.
Airflow over the top of the device creates a measurable pressure
differential. This sensor runs an I2C interface at 3.3V (which is in-
compatible with the 5V Arduino), so an external BSS138 level shifter
from Adafruit was required to properly interface with the sensor. All
of these sensors were mounted to the front of the case, and gasketed
to prevent unintended air exposure.

The final system is shown in Figures 3 and 4. An extension cord was
spliced and soldered to a dual port USB charger, with powered both
systems off of 5V USB. This extension cord was inserted through a
cable gland in the side of the box. A metal mounting bracket extends
from the back of the device. Both sub-systems were configured to
sample their sensors every 30 seconds.



55

MassDEP Site

Thanks to the generosity of the Massachusetts Department of Envi-
ronmental Protection, I was given full access to their Roxbury Mon-
itoring Site, allowed to co-locate the learnAir V1 sensor with their
sensing inlet (approximately 3 feet away), and provided (normally
unpublished) high time-resolution data. The Roxbury monitoring
site is the only one in the greater Boston area that has the capabil-
ity to monitor particulate levels (through hourly Beta Attenuation
Monitoring [BAM] measurements of black carbon), as well as minute-
resolution data for trace gases (CO, NO, NO2, and O3). We were also
provided with high quality, minute-resolved windspeed and wind
direction data, which we used to analyze our experimental differen-
tial pressure wind sensor and included as a training feature in our
machine learning data.

Figure 6: A picture of the Roxbury
MassDEP measurement site where the
LearnAir sensor was installed

The data provided by MassDEP is monitored weekly for quality as-
surance. Each piece of sensor technology is in the $10-100k range.
The EPA specifies Federal Reference Method (FRM) devices (de-
vices that are accepted as the reliable standard for research use and
to compare other devices against), as well as Federal Equivalence
Method (FEM) devices, which may use other techniques but are ac-
ceptable replacements for FRM techniques. All of these reference
devices include FRM or FEM certification.

Black Carbon measurements were done with a Teledyne Model 633
Aethalometer sensor system which operates similar to the BAM style
measurement. This type of measurement draws air through filter pa-
per for a period of time, and then irradiates it with UV and IR light
to see how well the captured particulate attenuates it. This means
that– though the measurement is incredibly robust and reliable– the
time-scale for measurements is on the order of an hour, and is an av-
erage of the accumulation over that period. For the system we were
using, a ‘10 a.m.’ reading is exposed to air from 10:00 to 10:50 a.m.,
and measured between 10:50 and 11a.m., before the next reading
begins. Measurements are reported as µg/m3.

Wind speed and direction data was captured on a minute time-scale
with a high-quality, vane style Met One 50.5H Sonic anemome-
ter. Trustworthy wind sensing data at these price points is non-
controversial. Measurements are reported in approach angle (de-
grees) for the direction and m/s for speed.



56

Figure 7: LearnAir Sensor installed at
the MassDEP site, close-up

For gaseous pollution measurements, all of the reference equipment
comes from Teledyne Advanced Pollutant Instruments. The system is
fed by an expensive, size-selective inlet with precise flow control. Air
is actively pulled through the system at a known, fixed rate. Cross-
sensitivity is not an issue for any of these devices.

For NO and NO2 measurements, the Teledyne Model 200E Chemi-
luminescence Sensor is used. NO is measured by exposing the gas
to O3 and measuring chemiluminescence, and a catalytic-reactive
converter then converts NO2 to NO and repeats the measurement. It
has a precision of 0.5% of its reading, and a t95 of 60 seconds for its
full operating range of 20 ppm, at a 0.5 L/min flow rate. It is capable
of reporting the average over a sample period or the instantaneous
value. It includes an adaptive filter that averages 42 samples over 5.6



57

minutes by default, unless it detects a rapid change in concentration
(comparing an instantaneous reading to the long filter average), in
which case it switches to a short-term, 6 sample, 48 second average.

For O3 measurements, the FEM Model T400 UV Absorption system
is used. It has a 0.5 ppb sensitivity, and a t95 of 20 seconds for its
full operating range of 10ppm at a 800cc/min flow rate. This system
works on the Beer-Lambert law, alternately comparing the absorption
of a stream the sampled air with an O3 filtered stream every 3 sec-
onds using UV light (and correcting for temperature and pressure of
the gas). It is capable of reporting the average over a sample period
or the instantaneous value. Its adaptive filter averages 32 samples
over 96 seconds by default, switching to a short-term, 6 sample, 18
second average with rapid changes in concentration.

For CO, the FEM Model 300EU Gas Filter Correlation system is used.
It has a 0.5% precision, and a t95 of 30 seconds for its full operating
range of 100ppm, at a 1.8 L/min flow rate It similarly uses the Beer-
Lambert law and IR light to compare a scrubbed sample with the
untouched air. It is also capable of reporting the average over a sam-
ple period or the instantaneous value. Its adaptive filter averages 750
samples over 150 seconds by default, switching to a short-term, 48
sample, 10 second average with rapid changes in concentration.

We installed the learnAir system face-down on the roof railing of the
main air monitoring building, about three feet from the reference
sensor inlet, as seen in Figure 8. Our sensor and the inlet both face
downward, however the Federal reference system has active airflow.
These inlets are mounted approximately 12 feet in the air and about
30-40 feet from the street.



58

Figure 8: LearnAir Sensor (box on left)
installation next to MassDEP inlet (top
of pole on right)



59

Figure 9: Main and daughter boards of
learnAir V2.0

LearnAir Version 2

While the first hardware device we built was designed to collect
data for testing and validation of learning algorithms, it does not
represent a scalable, portable, cheap solution. For that, we designed
learnAir V2.

LearnAir V2 was created to be inexpensive, handheld, and portable.
It is designed to measure ambient conditions– just like learnAir
V1– while still collecting the relevant air quality data. It is battery-
powered and smartphone connected, so that data can be seamlessly
GPS-tagged, viewed in real-time, and sent to the cloud. The out-
line of the internal circuit board was designed to mate with the Al-
phaSense AFE board. AlphaSense sensors come well recommended
in the air quality sensing community.

The circuit design for LearnAir V2 is shown in Figure 9. It consists
of a main board, designed around the Atmel ATmega32u4, and two
daughter boards. The main board sports a micro-SD card slot for
storing data, a Nordic nrf8001 with a chip antennae for Bluetooth
Low Energy communication with a phone, a microUSB connector
for charging the device and interacting with the microcontroller over
USB, a ST LIS2DH12 accelerometer to measure 3-axis motion and
vibration, a TI MAX4618 multiplexer to handle communication and
mating to the AlphaSense frontend board, a Maxim DS3231 RTC
(from the same family as the DS1307 used in learnAir V1 but with
temperature compensation and much more accurate timing), and



60

standard breakout headers for several I2C and SPI environmental
sensing peripherals at both 5V and 3.3V. The main circuit is powered
off of 3.3V to save on power, but 5V power handling is included.
Power to 5V peripherals can be programmatically shut on and off by
the microcontroller for power saving when sleeping high quiescent
devices. Schematics for learnAir V2 can be found in Appendix B.

Figure 10: Second revision, Atmel based
learnAir main board mated with the
AlphaSense sensor frontend

Two daughter boards were designed to connect with the main board
learnAir board. This modular design gives more flexibility for hous-
ing the device, simple upgradability, and separates concerns when
testing/verifying the circuitry.

The first of these daughter boards includes all sensors that need to
be mounted on against the edge of the device, either in contact with
the air or with direct access to sunlight. This small board includes a
ROHM BH1730FVC I2C light sensor, a Vishay VEML6070 I2C UV
sensor, and a Sensirion SHT25 temperature and humidity sensor. The
SHT25 is similar to the SHT21 used in learnAir V1, but with slightly
tighter tolerances.

The second daughter board is designed to hold three Omron D6F-
PH differential pressure sensors, for 3-axis wind sensing. This is
the same pressure sensor as was tested in the learnAir V1 device.
Since the D6F-PH does not come with selectable I2C addresses, this
daughter board also has an NXP PCA9545 I2C-bus switch to selective
open the I2C bus between one of the three pressure sensors and the
main learnAir board. This I2C bus switch is itself addressable and
controllable over I2C, so no extra pins are required to connect it.
Schematics for both daughter boards can be found in Appendix B.

Besides the connections to the three AlphaSense gas sensors con-
trolled by the AlphaSense Analog Front End board, the main board
is also equipped to connect to either a Sharp GP2Y1010AU0F (as
tested in the learnAir V1 device) or the much more accurate $500 Al-
phaSense OPC-N2. The OPC-N2 takes advantage of Mie scattering
algorithms and uses higher quality optics, but it is insensitive to par-
ticles under a few hundred nm and has a limited feature-set around
flow filtering and control. Independent validation of the OPC-N2 has
been mixed, and the device includes a built in fan (demanding a lot
of power for a portable device), but it offers an enticing combination
of cost and size given its sophistication.

A final physical design of the learnAir V2 device was modeled in
SolidWorks, and fits in the palm of a user’s hand (Figure 11). The



61

final cost of the OPC-N2 version is around $1k, while the Sharp ver-
sion is closer to $600.

Figure 11: Final design of the portable
system

Once the hardware was actually designed and built, firmware to con-
trol the device needed to be created. The Arduino environment and
libraries were used to write code for learnAir V2. Since this is a de-
manding application, the standard pinouts used by typical Arduino
boards needed to be redefined. LearnAir clocking and custom pin
mapping definition files were added to the Arduino environment–
now, similar to ‘Leonardo’ and ‘Due’ and other boards, the ‘learnAir’
board can be chosen and programmed as an option from the Arduino
environment dropdown menu. Firmware and board definition code
is available in Appendix B. The completed code and hardware was
tested with a learnAir smartphone application and shown to work
reliably.



62

Figure 12: Layouts for revisions 2.0 and
3.0 of the learnAir board

LearnAir Version 3

The third version of learnAir hardware is very similar to the sec-
ond in most ways. It supports the same daughter boards, peripher-
als, power circuitry, USB charging/communication, accelerometer,
and bluetooth communication. The main difference is the choice of
microprocessor– this time, the ST Micro STM32L152 was used. This
processor is much more advanced than the Atmel chip built into ver-
sion 2– it offers more a elegant programming interface, it has higher
resolution ADCs (12-bit instead of 10-bit), it runs at much lower
power and with many advanced power-handling features, it includes
advanced features like an on-board RTC and a fully parallel SDIO
interface, it has extensible and powerful code support, and it brings
the entire board down in price.

While it is able to connect to the existing wind daughter board, this
hardware includes an experimental differential pressure sensor (for
wind measurement) on the main learnAir board itself. This is a cut-
ting edge MEMS differential pressure sensor– the Sensirion SDP31–
which is not yet publicly available. While it performs similarly the
Omron D6F-PH, it is dramatically smaller– 8.5 x 5.5 x 4.4mm (600
mm3) vs. the Omron’s 26 x 18 x 22mm (31,000 mm3). This is a huge
reduction in size for the learnAir system.

The STM32L152’s onboard RTC also saves in cost and layout space
compared with version 2. The fully parallel SDIO interface is helpful
for power savings– SD Card data can be written over SPI (with two



63

data lines) or over this 4-pin parallel bus. SD Card writes are power
hungry, so it is useful for low-power operation to be able to minimize
write time by maximizing the parallelization of data transfer. BLE
transfer also requires bursts of power– it is valuable to be able to
store data on-board and batch-send it to the phone or over USB,
especially if the device’s battery is low. Additionally, the extra SPI
and I2C buses allow parallelization, which means we can cut our
duty cycle down. This type of advanced power optimization is a goal
of learnAir V3.

Power consumption for both boards is dominated by SD card writes,
BLE, and high power peripherals. Rough power estimates of each
system show the LearnAir V2 system requiring around 5 mW of
power (attached to the Sharp sensor with a 30 second duty cycle),
and the V3 system requiring around 3.5 mW. Since the OPC-N2 is
a relatively high power device, and must be left on for at least one
second to acquire a reading (unlike every other sensor in the system),
if it is connected it completely dominates our power estimates. Both
systems require an order of magnitude more power with the OPC-N2
included (35-40 mW). These are very rough estimates and a mea-
sured power characterization is required for meaningful claims– it is
safe to say, however, that with a several hundred mAh LiPo battery
we can expect a battery life of several days to several weeks, depend-
ing on the attached peripherals and duty cycling of the device.

The V3 version– while built and tested– still requires a few extra
support libraries to be ported over before it is smart-phone ready.
Firmware for the ST Family is much more complicated, and requires
much more thorough understanding of documentation and setup
to optimize it for truly low-power operation. The build process and
configuration of the board, its programming, and basic measurement
and output controls have all been successfully tested with this design.
It represents a major step toward true production-quality. Schematics
and code samples can be found in Appendix B.

Figure 13: Third revision, STM32L152-
based learnAir main board next to the
AlphaSense sensors



64

Hardware Comparison and Analysis

MassDEP hardware uses robust, FEM certified techniques– thus it
can be taken as a grounded reference over the time-scales it mea-
sures. The corresponding air quality sensors in the learnAir system
are variable in quality, and their analysis is discussed in Chapter 7.
Most of the remaining sensors included in the learnAir system are
robust and well-characterized for their purpose.

To validate proper function, in this section we compare temperature
and humidity readings from the learnAir device against correspond-
ing weather API data retrieved from ForecastIO for the latitude and
longitude of the device. We also analyze and compare our experi-
mental differential pressure wind sensing design against the ground-
truth MassDEP wind speed and wind direction.

ForecastIO data is hourly, and a 60 minute rolling average is used
to interpolate the values to the minute timescale. LearnAir data is
collected every minute.

Temperature and Humidity

Figure 14: Humidity Comparison of
SmartCitizen (orange) and ForecastIO
(green) over 4 days

Humidity was recorded in the box by the SmartCitizen Kit and com-
pared against the ForecastIO reading. Figure 15 shows a comparison
of each SmartCitizen reading with each ForecastIO value– ideally
they would track closely, falling on the 1:1 line when plotted against
each other. Instead we see a slight skew towards higher humidity in
the box. It is reasonable to assume this is a real phenomena– tem-
perature differential in the box may cause condensation and elevated
humidity. In either case, the consistency between the measurements
is quite good, and suggests trustworthiness.



65

Figure 15: Humidity Comparison,
SmartCitizen and ForecastIO

Figure 16: AlphaSense Raw Temper-
ature Data (green) with 15-minute
averaging (orange)

Temperature was recorded inside the box by both the AlphaSense
temperature sensor and the SmartCitizen Kit. Figure 16 shows quan-
tization error on the raw AlphaSense reading (teal)– this is mitigated
by taking a 15-minute rolling average (orange). In Figure 17 we see
a four day comparison of ForecastIO data with data taken in the
box from the AlphaSense and SmartCitizen sensors. We see good
agreement between in-the-box data, with some slight variation as
temperatures exceed 25 degrees Celsius. There is also good agree-
ment between the ForecastIO data and the in-the-box data when the
sun is down. This is a real effect– the learnAir box was exposed to di-
rect sunlight, and thus shows significant rises in temperature during
the day compared with ambient conditions. Both temperatures (and
their differential) are used to as features for our machine learning
algorithm, with in-the-box temperatures informing our calibration
process (which is appropriate as the air quality sensors are likewise
in the box).



66

Figure 17: Temperature close-up

Figure 18: Temperature Comparison,
SmartCitizen and ForecastIO

Wind

Using differences in pressure to sense wind direction is not a new
concept– pitot tubes (frequently found on airplanes) are one such ex-
ample. Recent work to create MEMs wind sensors using this modal-
ity has also started to appear. [80] It is not typical to find differential
pressure sensing used in this way, however; particularly at this scale,
and taking into account (or potentially leveraging) the geometry of a
larger box.

Thus, the included differential pressure sensor was a small, cheap,
and experimental way to measure airflow and wind through the de-
vice. One of its two ports is connected to the side of the box with a
tube, while the other is vented into the box– since the box has holes
and is pressure equalized, any differences we measure can be at-
tributed to wind on the outside box face. While the learnAir V1
sensor only had one differential pressure sensor in it (mounted on
the same face as the other sensor inlets), the boards were designed to
support three axis sensing, in order to get a truly 3-D understanding
of wind speed and directivity and how that may affect air quality
measurement. Doing so accurately requires polar pattern analysis,
orthogonality in wind response vs. direction, and some interesting



67

device geometry and signal processing. This is an open research
question in and of itself. In this first instance, only one axis (measur-
ing speed and not direction) was captured on the primary face of the
device.

As a first step to explore the feasibility of such a wind sensing sys-
tem, the learnAir system was (1) characterized using a home-made
laminar flow setup, and then (2) compared against trustworthy exter-
nal wind speed and direction data from MassDEP.

The goal of the first test was to get a sense for learnAir’s wind direc-
tion selectivity. Since the design is rectangular and the wind sensor
is protected by a slotted design, we would expect air flow parallel
with the slots to penetrate less than perpendicular flow. We’d also ex-
pect air coming directly at the sensing face of the device to penetrate
much more than air flow coming at the back.

Figure 19: A picture of a simple lam-
inar flow test setup for rough wind
directivity characterization

To test this, PVC pipes filled with large straws was placed in front of
a fan to approximate laminar flow conditions (Figure 19). Cardboard
was placed around the laminar flow section to prevent spurious eddy
currents. A handheld Extech 45158 Anemometer was used to validate
a constant airflow of 2 m/s (a light breeze). The learnAir V1 device
was then placed in the flow, and rotated at 30 degree intervals, with
10 wind measurements at each interval. The top half of figure 20
shows a normalized polar response with air flowing directly towards
the slotted wind sensor device face at 0 degrees (and directly at the
rear face of the device at 180). The bottom half shows the response of
the device with wind flowing over top of the face at various angles–
0 degrees represents airflow parallel with the short dimension of the
learnAir box, and 90 degrees is parallel with the long dimension.

As expected, the device responds with an interesting 3 dimensional
pattern. It is very responsive to airflow coming at the face, and very
insensitive to air flow coming from behind. It is very sensitive to
airflow perpendicular to its slots, and completely insensitive to air-
flow that is parallel. This is a very useful feature to exploit for truly
three dimensional wind sensing, and for controlling device airflow.
Designs that include checkerboard slots or slots in both directions
may be very impervious to wind. At the same time, with no active
airflow through the device, these results suggest that the air that is
being sampled is (1) more likely to be pushed into the cavity from
specific directions, which may artificially affect its sensitivity to direc-
tional sources of pollution like a nearby road, and (2) we may expect
some low-pass filtering effects relative to a sensor design that actively
pulls air through the device, especially when the wind is blowing in
a direction that has difficulty penetrating the slotted cover.



68

Figure 20: Wind Directivity Polar
Patterns

The second test compares windspeed measured by the device with
windspeed measured externally by the MassDEP sensor. We would
expect, given our polar plots, that (1) the actual airflow we’re sens-
ing is different/shielded from the real wind, so there may be some
differences in the measurement, and (2) our device is selective to cer-
tain wind directions, so it is important to analyze the relationship
of errors in our readings compared with the MassDEP readings as a
function of wind direction.

Figure 21 shows a comparison of measured windspeed data from
our pressure sensor against the MassDEP data for one day (after pre-
conditioning the signal and LMSE scaling it against the MassDEP
reference). There is a clear correlation in overall trend, suggesting the
pressure sensor is capturing meaningful information. Tight agree-
ment of ±5% between readings is highlighted in green.

While the overall trend is there, there are some large discrepancies.
Based on our polar plots, it seems worthwhile to look at the differ-



69

Figure 21: Wind Speed Measurement
with 10% Accuracy, Zoomed

ences between our measurement and the MassDEP measurement
as a function of wind direction, as shown in Figure 22. There are
clear and interesting relationships between measurement inaccura-
cies and wind direction– there are large differences in the readings
when the wind approaches from 60, 120, 210, 270 degrees, while 0,
90, 180, 260, and 320 degrees seem to match more closely. This does
not corroborate expectations exactly, given our polar plots (0 and 180
degrees having low error since they allow wind to pass, and 90 and
270 degrees having high error since they reject airflow). These results
suggest a more complicated relationship between direction and selec-
tivity. More rigorous testing is required to accurately characterize the
directionality of this system.

The overall trends support the fact that our pressure sensor is mea-
suring airflow in a correct and useful way. Having a measure of
airflow inside the slotted casing is good for tracking meaningful pen-
etration of wind, regardless of direction. This work suggests that
pressure sensors have great potential to provide a low cost, small
option for accurate wind sensing. Future research is necessary to op-
timize sensor geometry, orthogonalize sensor axes, and characterize
the effect of device geometry and turbulence on system linearity, in
order to understand the wind sensing potential for this technology.
For this project, the pressure signal provides insight regarding near-
field air flow that can be used as a training feature for our machine
learning model. More figures describing the wind data can be found



70

Figure 22: Discrepancy in Windspeed
Measurement vs Wind Direction

in the Appendix.



6. ChainAPI for Air Quality

ChainAPI [39, 40] is a hypermedia framework for the ’Web of Things’.
It provides a minimal layer of design principles on top of the HAL/J-
SON specification, to make data sharing and resource addressing
simple. It is extensible– allowing anyone to define their own ontolo-
gies and connect their own data storage solutions in a distributed
fashion– and attempts to only rigorously define a thin, hyperlink
layer that allows information to be easily discoverable and easily
digestible by any user or service.

Figure 23: Summary of New ChainAPI
Infrastructure

ChainAPI lends itself to the kinds of problems facing the air quality
community. It allows anyone, with any type of device, to store their
data however they see fit, and still easily connect to a broader ecosys-
tem. It allows researchers to browse through the entire ecosystem like
they would the internet. It incentivizes contribution with a broader
data ecosystem and interesting tools, while simultaneously lowering
the barrier to entry as much as possible.

In the Responsive Environments group at the MIT Media Lab,
ChainAPI already forms the backbone of a large ecological sensor
network installation called TidMarsh. [41] It connects hundreds of
sensors to a browsable, easy to use backend. It provides a simple
real-time data stream that developers have connected to for building
virtual environments, data visualizations, audio compositions, and
other novel tools for data interaction. Besides addressing the core
concerns of distributed, scalable, simple data-sharing, ChainAPI also
stands as the backbone of several future-looking human interactions
and interventions to help individuals live with, understand, internal-
ize, and mediate large datasets.

The TidMarsh ChainAPI environment forms the basis of the ChainAPI
Air Quality protocol. To make it useful for air quality, the first step
is to define an ontology that addresses the needs and concerns of the



72

air quality community. This ontology is significantly larger and more
complex than the current ChainAPI ontology, catering specifically to
concerns of stationary and mobile air quality sensing. This includes
shared resources that define sensor types and device types and rele-
vant metadata, as well as Organizational and Fixed Site information
so that larger groups like the EPA have an example resource that
maps well to their current ontology.

While several interesting tools have been created on top of the core
ChainAPI for interacting with live streams of known resources, there
are no tools to automatically explore and interact with a data ecosys-
tem that is dynamic and growing, or an ecosystem that has reached
critical mass (i.e. one update stream becomes infeasible as a way of
monitoring all resources). These are features we would expect from a
true, distributed ’Web of Things’ solution, and are of particular con-
cern for an air quality installation designed to support deployments
ranging from the EPA to small citizen groups. These features also lay
the groundwork for scalable learning algorithms, that can search the
network for nearby higher quality sensors and utilize their data.

In this thesis, we define a new ontology for ChainAPI to adapt it
to the air quality space. After creating a development environment
that takes advantage of this ontology, we created several tools to en-
able scalable interaction and advanced learning on this dataset. These
tools– chainCrawler, chainSearcher, chainTraverser, and chainProcessor–
form a backbone of extensible, powerful options for resource discov-
ery, automatic and transparent cross-organization dataset creation
and processing, as well as scalable, advanced machine learning tech-
niques. It encourages programmatic data processing that can scale
and is easily trackable. It also encourages a separation of concerns–
so the best-in-class raw data collection and the best-in-class pre-
processing algorithms can both exist transparently and be applied
broadly, instead of siloed researchers batch processing and scrubbing
data with opaque techniques before any data is shared.

At it’s most advanced, these tools provide a simple way to find and
compare co-located sensors of similar type but disparate quality, eas-
ily access the conditions under which those measurements occurred,
and apply any user-defined algorithm. This is all scaffolded in such a
way that the underlying algorithm or model can simply and automat-
ically update as more data is added to the network.



73

A New Ontology for Air Quality

The first major step in adapting ChainAPI for air quality networks is
to define a new ontology. The basic outline is as follows:

Organizations have Deployments. Deployments have Fixed Sites and Mobile
Devices. Both Fixed Sites and Mobile Devices have an extensible API data-
store for weather conditions, etc. (corresponding to their location) associated
with them. Fixed Sites have (non-Mobile) Devices. Devices each are associ-
ated with a particular Device Type (make and model), and each Device has a
collection of Sensors (individual data streams). Sensors are associated with a
particular Sensor Type, and have a collection of SensorData.

There are other resources and details, which are outlined in the full
documentation below. Some data (like SensorData, CalibrationData,
and APIData) have an associated storage resource that contains gen-
eral, important information about the collection of data (like what it’s
measuring, which API it is calling, etc). LocationData, on the other
hand, requires no metadata, and thus does not require a storage re-
source. ’Type’ resources are useful for quickly identifying resources
of the same type, and centralizing information about how to handle
that type.

One interesting example of the utility of centralized resource types is
that manufacturers could potentially oversee their device and sensor
types– updating metadata and associated calibration algorithms. A
new user to the ChainAPI system could then simply link their sensor
resource to the correct type, and an automated crawler could pull
the most recent, manufacturer-specified calibrations and apply them
automatically to the new user’s data. It could check the conditions
under which a measurement was made automatically, and warn the
user if the sensor is out of normal operating ranges. Additionally, the
manufacturer could store sensor service information in their sensor
type, and have an automated crawler that looks for sensors of that
type, checks their serial numbers, and notifies the contact person
associated with a resource if their sensor is in need of recalibration.

In general, the principle behind data storage in ChainAPI is to create
many ’virtual sensors’ to represent one real one. We encourage users
to store raw data in Chain, and after processing it, post the processed
data to a parallel ’virtual sensor’ that has a name that indicates it
comes from the same physical sensor, but has new units or is a new
metric.



74

A few minutiae are important for interoperability. Timestamps are
stored using ISO8601 standards (timezone aware UTC)– all python
code and scripts will accept (and only accept) one of the major
timezone-specified string formats. Timed/averaged measurements
are stored with a ’start time’ and a ’duration’.

Organization

An installation of ChainAPI maintained and curated by an Organization.

name( s t r i n g ) � the name of the o rgan i za t i on .
ur l ( s t r i n g ) � the websi te URL associated wi th the o rgan i za t i on .
ch : deployments ( r e l a t e d resource ) � a c o l l e c t i o n o f deployments assoc iated wi th the

o rgan i za t i on .
ch : contacts ( r e l a t e d resource ) � a c o l l e c t i o n o f contac ts assoc iated wi th the

o rgan i za t i on .

Deployment

A particular project owned by an organization, usually with several to hundreds of mobile sensors and/or fixed sites.

name( s t r i n g ) � the name of the deployment .
geoLocation ( e leva t ion , l a t i t u d e , l ong i t ude ) � a l o c a t i o n to assoc ia te w i th the

deployment ; usua l l y , the c i t y where the deployment i s based .
ch : organization ( r e l a t e d resource ) � the parent o rgan i za t i on .
ch : s i tes ( r e l a t e d resource ) � a c o l l e c t i o n o f f i x e d s i t e s assoc iated wi th the deployment

.
ch : devices ( r e l a t e d resource ) � a c o l l e c t i o n o f mobi le devices assoc iated wi th the

deployment .
ch : contacts ( r e l a t e d resource ) � a c o l l e c t i o n o f contac ts i n charge of the deployment .

Fixed Site

An immovable location where several devices are co-located.

name( s t r i n g ) � the name / i d e n t i f i e r o f the s i t e .
ur l ( s t r i n g ) � a websi te URL reference wi th ex t ra documentation about the s i t e .
geoLocation ( e leva t ion , l a t i t u d e , l ong i t ude ) � the f i x e d coord ina tes / e l e v a t i o n o f the

s i t e .
ch : deployment ( r e l a t e d resource ) � the parent deployment .
ch : devices ( r e l a t e d resource ) � a c o l l e c t i o n o f devices loca ted at the f i x e d s i t e .
ch : cal ibrat ion_datastores ( r e l a t e d resource ) � a c o l l e c t i o n o f c a l i b r a t i o n datas to res

assoc iated wi th the s i t e .
ch : api_datastores ( r e l a t e d resource ) � a c o l l e c t i o n o f API da tas to res assoc iated wi th

the s i t e l o c a t i o n .
ch : contacts ( r e l a t e d resource ) � a c o l l e c t i o n o f contac ts i n charge of s i t e maintenance .

Device

A manufactured object that houses a collection of sensors. If it is mobile, its proper parent is a deployment. If it is



75

stationary, its proper parent is a fixed site.

unique_name ( s t r i n g ) � a unique i d e n t i f i e r f o r the device .
serial_no ( s t r i n g ) � the manufacturer ’ s unique i d e n t i f i e r f o r the device .
deploy_date ( ISO8601 timestamp ) � the date the device was put i n the f i e l d .
manufacture_date ( ISO8601 timestamp ) � the date the device was manufactured .
description ( s t r i n g ) � ext ra , d e s c r i p t i v e data p e r t a i n i n g to t h i s device .
ch : device_type ( r e l a t e d resource ) � general device i n fo rma t i on f o r t h i s make / model

device .
ch : s i te ( r e l a t e d resource ) � the parent s i t e , i f a f i x e d device .
ch : deployment ( r e l a t e d resource ) � the parent deployment , i f a mobi le device .
ch : locationDataHistory ( r e l a t e d resource ) � a c o l l e c t i o n o f timestamped l o c a t i o n data ,

i f a mobi le device .
ch : api_datastores ( r e l a t e d resource ) � a c o l l e c t i o n o f API da tas to res assoc iated wi th

the device ’ s timestamped loca t ionData .
ch : contacts ( r e l a t e d resource ) � a c o l l e c t i o n o f contac ts i n charge of the device .

Device Type

A collection of useful data pertaining to several devices of the same make and model.

manufacturer ( s t r i n g ) � the name of the device manufacturer .
model ( s t r i n g ) � the name / number o f the device model .
revision ( s t r i n g ) � the hardware r e v i s i o n o f the device .
datasheet_url ( s t r i n g ) � the websi te URL associated wi th the most cu r ren t datasheet .
description ( s t r i n g ) � ext ra , d e s c r i p t i v e data p e r t a i n i n g to t h i s device type .
ch : devices ( r e l a t e d resource ) � a c o l l e c t i o n o f a l l devices o f t h i s type .

Sensor

An object that captures a single channel of timestamped data. There maybe multiple sensors in a device.

metric ( s t r i n g ) � a l a b e l f o r the measured q u a n t i t y ( i . e . ’O3’ , ’CO’ , ’NO2’ ) .
unit ( s t r i n g ) � the u n i t s o f the measurement ( i . e . ’ ppb ’ , ’ ug /m3 ’ )
ch : sensor_type ( r e l a t e d resource ) � general sensor i n fo rma t i on f o r t h i s make / model

sensor .
dataType ( s t r i n g ) � the datatype stored by the sensor ( f l o a t ) .
value ( f l o a t ) � the most recent reading from the sensor .
updated ( ISO8601 timestamp ) � the timestamp of the most recent reading from the sensor .
ch : dataHistory ( r e l a t e d resource ) � the c o l l e c t i o n o f timestamped data from t h i s sensor .
ch : device ( r e l a t e d resource ) � the parent device .

Sensor Type

A collection of useful data pertaining to several sensors of the same make and model.

manufacturer ( s t r i n g ) � the name of the sensor manufacturer .
model ( s t r i n g ) � the name / number o f the sensor model .
revision ( s t r i n g ) � the hardware r e v i s i o n o f the sensor .
datasheet_url ( s t r i n g ) � the websi te URL associated wi th the most cu r ren t datasheet .



76

description ( s t r i n g ) � ext ra , d e s c r i p t i v e data p e r t a i n i n g to t h i s sensor type .
re ta i l _cos t ( f l o a t ) � rough est imate o f sensor cost , f o r f u t u r e ’ value ’ comparisons .
l ea rn_pr io r i ty ( i n t ) � an i n d i c a t i o n o f sensor t r u s t w o r t h i n e s s . This can be used so

lower rank ing sensors w i l l l ea rn from higher rank ing ones a u t o m a t i c a l l y .
service_interval_days ( f l o a t ) � number o f days between recommended s e r v i c i n g .
sensor_topology ( s t r i n g ) � a d e s c r i p t i o n o f device opera t ing p r i n c i p l e s ( i . e . ’BAM’ , ’

e lec t rochemica l ’ )
ch : sensors ( r e l a t e d resource ) � a c o l l e c t i o n o f a l l sensors o f t h i s type .

Sensor Data

The raw data associated with a sensor.

dataType ( s t r i n g ) � the datatype of the raw data ( f l o a t ) .
totalCount ( i n t ) � t o t a l number o f saved datapo in ts , or the number re turned on t h i s page

i f the dataset i s la rge .
data ( l i s t ) � a c o l l e c t i o n o f data ob jects , each wi th a ’ value ’ ( f l o a t ) and a ’ timestamp

’ ( ISO8601 timestamp )

API DataStore

An object that captures a single channel of external API data. There maybe multiple API Datastores associated with a
mobile device or a fixed site.

metric ( s t r i n g ) � a l a b e l f o r the measured q u a n t i t y ( i . e . ’ temp ’ , ’ humid i ty ) .
unit ( s t r i n g ) � the u n i t s o f the measurement ( i . e . ’ Cels ius ’ , ’ percent ’ )
metadata ( s t r i n g ) � an ex t ra t e x t f i e l d f o r r e l evan t metadata .
ch : api_type ( r e l a t e d resource ) � general i n f o rma t i on about the ex te rna l API .
dataType ( s t r i n g ) � the datatype stored i n t h i s API da tas to re ( f l o a t ) .
value ( f l o a t ) � the most recent value from the API .
updated ( ISO8601 timestamp ) � the timestamp of the most recent API c a l l .
ch : dataHistory ( r e l a t e d resource ) � the c o l l e c t i o n o f data from t h i s API .
ch : s i te ( r e l a t e d resource ) � the parent s i t e i f assoc ia ted wi th a s i t e .
ch : device ( r e l a t e d resource ) � the parent device i f assoc ia ted wi th a mobi le device .

API Type

A collection of useful data pertaining to a given external API.

api_name ( s t r i n g ) � the name of the API .
api_base_address ( s t r i n g ) � the base API access URL.
description ( s t r i n g ) � ext ra , d e s c r i p t i v e data p e r t a i n i n g to t h i s API .
ch : devices ( r e l a t e d resource ) � a c o l l e c t i o n o f a l l mobi le devices t h a t use t h i s API .
ch : s i tes ( r e l a t e d resource ) � a c o l l e c t i o n o f a l l f i x e d s i t e s t h a t use t h i s API .

API Data

The raw data associated with an API Datastore.

dataType ( s t r i n g ) � the datatype of the raw data ( f l o a t ) .



77

totalCount ( i n t ) � t o t a l number o f saved datapo in ts , or the number re turned on t h i s page
i f the dataset i s la rge .

data ( l i s t ) � a c o l l e c t i o n o f data ob jects , each wi th a ’ value ’ ( f l o a t ) , a ’ timestamp ’ (
ISO8601 timestamp ) , the ’ a p i _ c a l l ’ used to r e t r i e v e the data ( s t r i n g ) , the ’
api_access_time ’ ( ISO8601 timestamp ) when the c a l l was i n i t i a t e d , and the ’
durat ion_sec ’ ( i n t ) t h a t the API data i s use fu l f o r ( s t a r t i n g from ’ timestamp ’ ) .

Cal ibrat ion DataStore

An object that captures a single channel of calibration data. There maybe multiple calibration datastores associated with
a mobile device or a fixed site.

metric ( s t r i n g ) � a l a b e l f o r the measured q u a n t i t y ( i . e . ’ s e n s i t i v i t y ’ , ’ vo l t age_o f f se t
’ ) .

unit ( s t r i n g ) � the u n i t s o f the measurement ( i . e . ’ ppb / nA ’ , ’mV’ )
metadata ( s t r i n g ) � an ex t ra t e x t f i e l d f o r r e l evan t metadata .
dataType ( s t r i n g ) � the datatype stored i n t h i s c a l i b r a t i o n da tas to re ( f l o a t ) .
value ( f l o a t ) � the most recent c a l i b r a t i o n value .
updated ( ISO8601 timestamp ) � the timestamp of the most recent c a l i b r a t i o n .
ch : dataHistory ( r e l a t e d resource ) � the c o l l e c t i o n o f data from c a l i b r a t i o n da tas to re .
ch : s i te ( r e l a t e d resource ) � the parent s i t e i f assoc ia ted wi th a s i t e .
ch : sensor ( r e l a t e d resource ) � the parent sensor i f assoc ia ted wi th a mobi le device .

Cal ibrat ion Data

The raw data associated with a Calibration Datastore.

dataType ( s t r i n g ) � the datatype of the raw data ( f l o a t ) .
totalCount ( i n t ) � t o t a l number o f saved datapo in ts , or the number re turned on t h i s page

i f the dataset i s la rge .
data ( l i s t ) � a c o l l e c t i o n o f data ob jects , each wi th a ’ value ’ ( f l o a t ) , a ’ timestamp ’ (

ISO8601 timestamp ) , a ’ desc r i p t i on ’ ( s t r i n g ) , and a ’ contact ’ ( r e l a t e d resource ) .

Location Data

The raw data that forms a collection of timestamped location information for tracking a mobile device.

l a t i tude ( f l o a t ) � a l a t i t u d e GPS coord ina te .
longitude ( f l o a t ) � a long i t ude GPS coord ina te .
elevation ( f l o a t ) � e l ev a t i on i n meters .
timestamp ( ISO8601 timestamp ) � the timestamp associated wi th t h i s l o c a t i o n reading .
ch : device ( r e l a t e d resource ) � the parent device .

Contact

A person that is part of an organization, oversees/calibrates a deployment or site, or owns a device.

first_name ( s t r i n g ) � a contact ’ s f i r s t name .
last_name ( s t r i n g ) � a contact ’ s l a s t name .
phone ( s t r i n g ) � a contact ’ s phone number .



78

email ( s t r i n g ) � a contact ’ s emai l address .
ch : organization ( r e l a t e d resource ) � a contact ’ s o rgan i za t i on .
ch : deployments ( r e l a t e d resource ) � a c o l l e c t i o n o f deployments overseen by the contac t .
ch : devices ( r e l a t e d resource ) � a c o l l e c t i o n o f devices owned by the contac t .
ch : s i tes ( r e l a t e d resource ) � a c o l l e c t i o n o f s i t e s overseen by the contac t .
ch : cal ibrat ion_data ( r e l a t e d resource ) � a c o l l e c t i o n o f c a l i b r a t i o n logs measured by

the contac t .

Traversing ChainAPI

chainCrawler - a web-crawler for ChainAPI

Now that we’ve created an ontology for air quality, it’s important to
have the tools to interact with the data as new devices are added.
ChainCrawler is a tool for crawling through ChainAPI resource
links and discovering new resources. It works like a traditional web-
crawler.

ChainCrawler is highly optimized for speed and scale, using Google’s
CityHash to track the most recently visited resources so the crawler
doesn’t loop or backtrack. It has the additional feature of tracking
hash collisions as required, and can accept any power of 2 size hash
table.

ChainCrawler accepts an entry point URI, and picks a random, un-
explored link to traverse from that resource. If it reaches a dead end
or has already visited all of a resource’s links, it moves back through
its recent history ( of URIs in history are definable) to look for unex-
plored resources. If it runs out of history, it returns to the entry-point
resource. At this point, if every entry-point resource path has been
visited, the cache is cleared and the process is started over.

ChainCrawler will return the URI(s) of chain resources based on
search criteria. It can filter on resource_type (i.e. ’Site’ or ’Device’),
resource_title (i.e. ’Site 1- Roxbury’ or ’Device 2’), any arbitrary object
attribute, or any combination of the above.

ChainCrawler can be used in several modes. It can be run in a block-
ing manner, and simply return the URI of the first resource it finds. It
can be run as a separate thread, and pass URIs to another thread us-
ing python’s ’Queue’ library. It can also be run in ZMQ push mode,



79

in which case all URIs are pushed out over a ZMQ socket using
push/pull (preferred method). In these threaded cases, chainCrawler
will not stop crawling until forced. It will not return duplicate re-
sources for over a given, user-definable, refractory period (which can
be set to infinite).

chainCrawler . ChainCrawler ( en t ry_po in t , cache_table_mask_length , t rack_search_depth ,
found_set_pers is tence , crawl_delay , f i l t e r _ k e y w o r d s )

Initialize a ChainCrawler Instance.

entry_point ( = ’ h t t p : / / l e a r n a i r . media . mi t . edu :8000 ’ ) i s the URI o f the resource to
s t a r t c raw l ing .

cache_table_mask_length ( = 8) i s the exponent used to de f ine the hash mask f o r the hash
tab l e . ( hash tab l e s ize = 2^ cache_table_mask_length )

search_depth ( = 5) i s the number o f URIs we s to re i n h i s t o r y , i n case we exhaust a l l
l i n k s and have to back up .

found_set_persistence ( = 720) i s the time , i n minutes , t h a t a crawle r w i l l remember a
resource i t has a l ready seen , and w i l l not re�push i t to the user

crawl_delay ( = 1000) i s the time , i n ms, i n between c a l l s to the server to access chain
resources .

f i l ter_keywords ( = [ ’ next ’ , ’ previous ’ ] ) i s an ar ray o f l i n k r e l a t i o n s h i p s we want to
ignore wh i le c raw l ing . For our data , ’ next ’ and ’ previous ’ are requ i red .

chainCrawler . ChainCrawler . f ind ( namespace , resource_type , p lu ra l_ resource_ type , r e s o u r c e _ t i t l e ,
resource_ext ra )

Blocking crawl that will exit/return the URI of the first matching resource.

namespace ( = " " ) i s the base URI t h a t de f ines the o n t o l o g i c a l r e l a t i o n s h i p s . Prepended
to resource_types .

resource_type ( = None ) i s an o p t i o n a l resource type search c r i t e r i a t h a t must match a
given resource f o r i t to be re turned .

plural_resource_type ( = None ) i s a search c r i t e r i a t h a t should correspond the
resource_type f i e l d . P l u r a l types are a u t o m a t i c a l l y generated by look ing a t the
s i n g u l a r resource_type and adding ’ s ’ and ’ es ’ , but f o r words t h a t have strange
p l u r a l i z a t i o n , i t i s impor tan t to g ive the c o r r e c t p l u r a l form .

resource_t i t le ( = None ) i s an o p t i o n a l resource t i t l e search c r i t e r i a t h a t must match a
given resource f o r i t to be re turned .

resource_extra ( = None ) i s an o p t i o n a l d i c t i o n a r y o f a t t r i b u t e : value pa i r s t h a t must
match a given resource f o r i t to be re turned .

chainCrawler . ChainCrawler . crawl_thread ( q , namespace , resource_type , p lu ra l_ resource_ type ,
r e s o u r c e _ t i t l e , resource_ext ra )

Similar to find, but this function spins up a background thread crawler that will push URIs of the matching resources
onto the queue ’q’.

q ( = None ) i s the Queue ob jec t t h a t URIs w i l l be pushed to f o r o ther python threads to



80

access .

chainCrawler . ChainCrawler . crawl_zmq ( socket , namespace , resource_type , p lu ra l_ resource_type ,
r e s o u r c e _ t i t l e , resource_ext ra )

Similar to find, but this function spins up a background thread crawler that will push URIs of the matching resources
over a PUSH/PULL ZMQ socket.

socket ( = ’ tcp : / / 1 2 7 . 0 . 0 . 1 : 5 5 5 7 ’ ) i s the ZMQ PUSH/ PULL socket t h a t URIs w i l l be pushed
to f o r o ther programs to access .

1 crawler = ChainCrawler(’http :// learnair.media.mit.edu :8000/ ’,
,! found_set_persistence =2, crawl_delay =500)

2
3 #--- Blocking Find ---#
4 x = crawler.find(namespace=’http :// learnair.media.mit.edu :8000/ rels/’,

,! resource_type=’sensor ’, resource_extra ={’sensor_type ’:’
,! AlphasenseO3 -A4’})

5 print x
6
7 #--- Threaded Queue ---#
8 testQueue = Queue.Queue()
9 crawler.crawl_thread(q=testQueue , namespace=’http :// learnair.media.mit.edu

,! :8000/ rels/’, resource_type=’Device ’, resource_title=’test004 ’)
10
11 #caution: this main loop doesn ’t end
12 while True:
13 uri = testQueue.get()
14 print uri
15
16 time.sleep (5)
17
18 #--- ZMQ Socket Push on TCP ://127.0.0.1:5557 ---#
19 crawler.crawl_zmq(namespace=’http :// learnair.media.mit.edu :8000/ rels/’,

,! resource_title=’Device�#1’)

chainSearch - a breadth first search tool for ChainAPI

ChainCrawler allows us to randomly crawl through the entire chain
infrastructure looking for a specified resource or resource type. While
this is powerful, it is also important to have a generalized tool that
allows us to search for closely associated resources– for instance,



81

locating the sensors that are part of a device if we only know the
device’s URI. Crawling would be the wrong strategy in this case.

Instead, we want to examine all resources linked directly from the
device to see if any match our query, and then examine the child
relationships of those resources, and so on. Perhaps we only want the
resource if it is a direct child. In these cases, chainSearch- a breadth
first search tool that will search within a specified number of link
relationships away from the entry resource- is the correct tool for the
job. Combined with chainCrawler, we now have tools to crawl and
find any/all resources in ChainAPI, and then intelligently traverse
local relationships within the ChainAPI ecosystem.

chainCrawler . ChainSearch ( en t ry_po in t , crawl_delay , f i l t e r _ k e y w o r d s )

Initialize a ChainSearch Instance.

entry_point ( = ’ h t t p : / / l e a r n a i r . media . mi t . edu :8000 ’ ) i s the URI o f the resource to
s t a r t c raw l ing .

crawl_delay ( = 1000) i s the time , i n ms, i n between c a l l s to the server to access chain
resources .

f i l ter_keywords ( = [ ’ next ’ , ’ previous ’ ] ) i s an ar ray o f l i n k r e l a t i o n s h i p s we want to
ignore wh i le c raw l ing . For our data , ’ next ’ and ’ previous ’ are requ i red .

chainCrawler . ChainSearch . f ind_degrees_all ( namespace , resource_type , p lu ra l_ resource_type ,
r e s o u r c e _ t i t l e , degrees )

Blocking, exhaustive breadth first search of all resource ’degrees’ degrees away from the entry point. Returns a list
of all URIs within ’degrees’ of links from the current resource that match the search criteria. Returns an empty list
if no resources match criteria.

namespace ( = " " ) i s the base URI t h a t de f ines the o n t o l o g i c a l r e l a t i o n s h i p s . Prepended
to resource_types .

resource_type ( = None ) i s an o p t i o n a l resource type search c r i t e r i a t h a t must match a
given resource f o r i t to be re turned .

plural_resource_type ( = None ) i s a search c r i t e r i a t h a t should correspond the
resource_type f i e l d . P l u r a l types are a u t o m a t i c a l l y generated by look ing a t the
s i n g u l a r resource_type and adding ’ s ’ and ’ es ’ , but f o r words t h a t have strange
p l u r a l i z a t i o n , i t i s impor tan t to g ive the c o r r e c t p l u r a l form .

resource_t i t le ( = None ) i s an o p t i o n a l resource t i t l e search c r i t e r i a t h a t must match a
given resource f o r i t to be re turned .

degrees ( = 1) i s the number o f degree r e l a t i o n s h i p s to exhaus t i ve l y search from the
en t ry po in t f o r a matching resource .

chainCrawler . ChainSearch . f i n d _ f i r s t ( namespace , resource_type , p lu ra l_ resource_type ,
r e s o u r c e _ t i t l e , degrees )

Same as find_degrees_all, but this blocking breadth first search will immediately exit and return a resource upon



82

finding the first match. If it exhaustively searches within degrees, it returns an empty list.

degrees ( = 3) i s the number o f degree r e l a t i o n s h i p s to exhaus t i ve l y search from the
en t ry po in t f o r a matching resource .

chainCrawler . ChainSearch . f ind_create_l ink ( namespace , resource_type , p lu ra l_ resource_type ,
degrees )

Exhaustive breadth first search that returns the first matching create-form URI for a resource of type resource_type.

degrees ( = 1) i s the number o f degree r e l a t i o n s h i p s to exhaus t i ve l y search from the
c rea t i on l i n k o f type ’ resource_type ’ .

chainCrawler . ChainSearch . reset_entrypoint ( new_entrypoint )

Helper function to reset ’entry point’ of a ChainSearch instance for easy re-use.

new_entrypoint ( = ’ h t t p : / / l e a r n a i r . media . mi t . edu :8000 ’ ) i s a s t r i n g matching the URI o f
the new s t a r t i n g po in t resource .

1 searcher = chainSearch.ChainSearch(’http :// learnair.media.mit.edu :8000/
,! devices /10’)

2
3 #-- Find Creation Link to Make a Sensor on this Device --#
4 resource_uri = searcher.find_create_link(namespace=’http :// learnair.media.

,! mit.edu :8000/ rels/’, resource_type=’sensor ’ )
5 print resource_uri
6
7 #-- Change Starting Point for Search --#
8 searcher.reset_entrypoint(’http :// learnair.media.mit.edu :8000/ devices /?

,! site_id =1’)
9

10 #-- Find First Device with Name ’Device #3’ within 4 Link Steps --#
11 resource_uri = searcher.find_first(resource_title=’Device�#3’, degrees =4)
12 print resource_uri
13
14 #-- Find All Devices within 2 Link Steps --#
15 list_of_resource_uris = searcher.find_degrees_all(resource_type=’Device ’,

,! degrees =2)
16 print list_of_resource_uris



83

chainTraverser - a stateful spider for ChainAPI

Normally we think of web spiders as simple crawlers. chainTraverser
is a Spider that comes with extra functionality. ChainTraverser always
’sits’ on top of an associated ChainAPI resource. It takes advantage
of chainCrawler and chainSearch in a natural way– from its current
resource, it can (1) crawl randomly to another resource of a certain
type, (2) search and traverse basic link relationships, (3) search and
traverse complicated, pre-defined link paths, and (4) move forward
and backwards relative to where it has been.

Besides moving through ChainAPI from one resource to another,
chainTraverser provides many tools to interact with the ChainAPI re-
source it is associated with. From the current resource, chainTraverser
can add new child resources, or even add cascading child resources
along a pre-defined link path. It can also pull and push data to and
from its resource.

For all air quality applications, this is the primary tool used to GET/-
POST data to ChainAPI, as well as to handle traversal tasks from the
trivial (i.e. finding the temperature sensor belonging to a device) to
the extensive (i.e. creating a multi-sensor, multi-device site given a
target organization name and deployment).

chainTraversal . ChainTraversal ( crawl_delay , en t ry_po in t , namespace )

Initialize a ChainTraversal Instance.

crawl_delay ( = 1000) i s the time , i n ms, i n between c a l l s to the server to access chain
resources .

entry_point ( = ’ h t t p : / / l e a r n a i r . media . mi t . edu :8000 ’ ) i s the URI o f the resource to
s t a r t c raw l ing .

namespace ( = ’ h t t p : / / l e a r n a i r . media . mi t . edu :8000/ r e l s / ’ ) i s the base URI t h a t de f ines
the o n t o l o g i c a l r e l a t i o n s h i p s . Prepended to resource_types .

chainTraversal . ChainTraversal . pr in t_sta te ( )

prints the current state- the associated resource, the resource type, and the traversal history.

chainTraversal . ChainTraversal . back ( )

moves the traverser back to the previous node.

chainTraversal . ChainTraversal . forward ( )



84

moves the traverser forward to the next node, if we’ve moved back in the history.

chainTraversal . ChainTraversal . find_a_resource ( resource , name)

Blocking crawl to a resource of type ’resource’, specifically one titled ’name’ if name is passed. Upon
completion, chainTraversal is associated with this resource.

resource i s the resource type the t r a v e r s e r w i l l c rawl f o r and then update i t s s t a te to
r e f l e c t .

name ( = None ) i s name or t i t l e o f the resource query we are c raw l ing to match . I f l e f t
as None , the f i r s t resource o f the c o r r e c t type w i l l be considered a match .

chainTraversal . ChainTraversal . add_a_resource ( resource_type , post_data , p lu ra l_ resource_ type )

This adds a resource of resource_type with attributes in post_data, one link from the current traversal node.
This is safe to call if a resource already exists- it will return False if a matching resource is found.
Otherwise, it will create the resource and return the server response.

resource_type the type of resource to be created ( i . e . ’ Device ’ , ’ Sensor ’ )
post_data the requ i red data to create the corresponding resource_type
plural_resource_type ( = None ) i s a search c r i t e r i a t h a t should correspond the

resource_type f i e l d . P l u r a l types are a u t o m a t i c a l l y generated by look ing a t the
s i n g u l a r resource_type and adding ’ s ’ and ’ es ’ , but f o r words t h a t have strange
p l u r a l i z a t i o n , i t i s impor tan t to g ive the c o r r e c t p l u r a l form .

chainTraversal . ChainTraversal . move_to_resource ( resource_type , name, p lu ra l_ resource_ type )

This is designed to move to a neighboring resource with a link relationship to the current traversal node.
If no matching resource is found with the shallow breadth first search, the traverser will not move and the
function will return False (successful traversal returns True).

resource_type i s the resource type the t r a v e r s e r w i l l search f o r and then update i t s
s ta t e to r e f l e c t .

name ( = None ) i s name or t i t l e o f the resource query we are searching to match .
plural_resource_type ( = None ) i s a search c r i t e r i a t h a t should correspond the

resource_type f i e l d . P l u r a l types are a u t o m a t i c a l l y generated by look ing a t the
s i n g u l a r resource_type and adding ’ s ’ and ’ es ’ , but f o r words t h a t have strange
p l u r a l i z a t i o n , i t i s impor tan t to g ive the c o r r e c t p l u r a l form .

chainTraversal . ChainTraversal . add_and_move_to_resource ( resource_type , post_data ,
p lu ra l_ resource_ type )

This is a combination of the previous two functions, to create and move to a resource. It is safe to
call if a resource already exists- it will not overwrite it, it will simply move to it.



85

chainTraversal . ChainTraversal . find_and_move_path_exists ( p a t h _ l i s t )

This expects a list of dicts that will guide us through Chain API. It will crawl to find the first resource,
and then move through the following items one link relationship at a time, if they exist, until settling on
the last node. If the path is incorrectly specified, it will move as far down the path_list as possible.

path_ l is t a l i s t o f d i c t s s p e c i f y i n g types and names of e x i s t i n g resources to t rave rse .
i . e . , [ { ’ type ’ : ’ o rgan iza t ion ’ , ’name ’ : ’ tes tOrg Name’ } , { ’ type ’ : ’ deployment ’ , ’name

’ : ’ l ea rna i rNe t ’ } , { ’ type ’ : ’ device ’ , ’name ’ : ’ device1 ’ } ]

chainTraversal . ChainTraversal . find_and_move_path_create ( p a t h _ l i s t )

This expects a list of dicts that will guide us through Chain API. It will crawl to find the first resource,
and then move through the following items one link relationship at a time, creating resources if they don’t
exist, until settling on the last node.

path_ l is t a l i s t o f d i c t s s p e c i f y i n g types o f resources and post_data to t rave rse and / or
create . i . e . , [ { ’ type ’ : ’ o rgan iza t ion ’ , ’name ’ : ’ tes tOrg Name’ } , { ’ type ’ : ’ deployment

’ , ’ post_data ’ : { ’ name ’ : ’ l ea rna i rNe t ’ } } , { ’ type ’ : ’ device ’ , ’ post_data ’ : { ’ name ’ : ’
device1 ’ } } ]

chainTraversal . ChainTraversal . add_data ( post_data , resource_type )

This adds data to a sensor, calibration datastore, api datastore, etc. if the traverser is located at that node.
It will post data without checking for existing data, and may result in duplicate copies. If this is undesirable,
use ChainTraversal.safe_add_data().

resource_type ( = ’ da taHis tory ’ ) the type of data resource to be created . For normal
sensors , the appropr ia te resource_type i s the d e f a u l t ’ da taHis tory ’ .

post_data any ar ray o f p rope r l y fo rmat ted data values to post

chainTraversal . ChainTraversal . safe_add_data ( post_data , resource_type , max_empty_steps )

This adds data to a sensor, calibration datastore, api datastore, etc. if the traverser is located at that node.
It will first pull data at the node where it should be posting. If data exists at matching timestamp to
post_data, these data won’t be uploaded/duplicated.

resource_type ( = ’ da taHis tory ’ ) the type of data resource to be created . For normal
sensors , the appropr ia te resource_type i s the d e f a u l t ’ da taHis tory ’ .

post_data any ar ray o f p rope r l y formated data values to post
max_empty_steps ( = 10) f o r p u l l i n g the comparison data from the sensor . This i s the

number o f empty pages i n a row we must see before we assume we ’ ve reached the end of
the data s tored i n Chain ( there i s no e x p l i c i t i n d i c a t i o n o f e a r l i e s t / l a t e s t

measurements , i t must be assumed by t r a v e r s a l ) .

chainTraversal . ChainTraversal . get_al l_data ( max_empty_steps , resource_type )



86

This pulls all data from a sensor, calibration datastore, api datastore, etc. if the traverser is located at
that node. It will return a timestamp sorted list of dicts with the relevant data.

max_empty_steps ( = 10) the number o f empty pages i n a row we must see before we assume
we ’ ve reached the end of the data s tored i n Chain ( there i s no e x p l i c i t i n d i c a t i o n
o f e a r l i e s t / l a t e s t measurements , i t must be assumed by t r a v e r s a l ) .

resource_type ( = ’ da taHis tory ’ ) the type of data resource to be pu l l ed . For normal
sensors , the appropr ia te resource_type i s the d e f a u l t ’ da taHis tory ’ .

1 traveler = ChainTraversal ()
2 traveler.print_state ()
3
4 #-- Standard Traversal --#
5 traveler.find_an_organization(’ResEnv�Test�Organization�#1’)
6 traveler.move_to_resource(’deployment ’, ’Test�Deployment�#2’)
7 traveler.back() #back to organization
8 traveler.forward () #forward to deployment
9 traveler.move_to_resource(’device ’, ’testdevice001 ’) #move to device

10 traveler.add_and_move_to_resource(’sensor ’, {’metric ’:’COT’,’sensor_type ’:
,! ’alphasenseCOT ’,’unit’:’ppb’})

11
12 #-- Add Data to Current Sensor --#
13 traveler.print_state ()
14 traveler.safe_add_data(
15 [{’value ’:64.1 ,’timestamp ’:’2016 -05 -18�20:09:00+0000 ’},
16 {’value’:65.0,’timestamp ’:’2016 -05 -18�20:11:00+0000 ’},
17 {’value’:62.2,’timestamp ’:’2016 -05 -18�20:12:00+0000 ’},
18 {’value’:64.3,’timestamp ’:’2016 -05 -18�20:13:00+0000 ’},
19 {’value’:63.9,’timestamp ’:’2016 -05 -18�20:14:00+0000 ’},
20 {’value’:63.7,’timestamp ’:’2016 -05 -18�20:15:00+0000 ’} ])
21
22 #-- Path List Examples --#
23 find_and_move_path_exists ([{’type’:’organization ’, ’name’:’testOrg�Name’},

,! {’type’:’deployment ’, ’name’:’learnairNet ’}, {’type’:’device ’, ’
,! name’:’device1 ’])

24
25 find_and_move_path_create ([{’type’:’organization ’, ’name’:’testOrg�Name’},

,! {’type’:’deployment ’, ’post_data ’:{’name’:’learnairNet ’}}, {’type’:
,! ’device ’, ’post_data ’:{’name’:’device1 ’}}])



87

ChainAPI Tools for Scalable, Automatic Data Analysis

chainExcelPush - easily add spreadsheet data to ChainAPI

One important part of the ChainAPI infrastructure to drive its adop-
tion are basic tools for data manipulation and uploading. chainEx-
celPush is a simple, extensible tool that uses chainTraversal to make
uploading excel files and csv files quick and painless.

chainExcelPush provides one prototype file and requires one com-
mand to use properly. The prototype file must be edited to (1) pro-
vide the general path through ChainAPI to the device where you
would like to push the data, and (2) provide a mapping between
each excel column label and the device’s sensor in ChainAPI where
it should post. Once this prototype function has been filled out, run-
ning the chainExcelPush script will prompt the user to select the path
to their excel files, and the rest will happen automatically.

This is an example of a prototype function for the LearnAir V1 de-
vice. By modifying this ’smart_upload’ function, it is easy to auto-
mate any excel upload to chainAPI:

1 def smart_upload(upload_array):
2 #look at keys , figure out where these values should be stored in chain
3 #call upload and actually upload values
4
5 def switch(x):
6 return {
7 ’humidity�(�%�raw)’:{
8 ’device ’:{
9 ’unique_name ’:’learnAirFixedV1 ’,

10 ’device_type ’:’learnAirFixedV1 ’},
11 ’sensor ’: {
12 ’sensor_type ’:’SHT21’,
13 ’metric ’:’humidity_raw ’,
14 ’unit’:’raw’},
15 },
16
17 ’light�(�lx)’:{
18 ’device ’:{
19 ’unique_name ’:’learnAirFixedV1 ’,
20 ’device_type ’:’learnAirFixedV1 ’},
21 ’sensor ’: {



88

22 ’sensor_type ’:’BH1730FVC ’,
23 ’metric ’:’light’,
24 ’unit’:’lux’},
25 },
26
27 ’nitrogen�dioxide�(�kohm)’: {
28 ’device ’:{
29 ’unique_name ’:’learnAirFixedV1 ’,
30 ’device_type ’:’learnAirFixedV1 ’},
31 ’sensor ’: {
32 ’sensor_type ’:’MICS4514 ’,
33 ’metric ’:’NO2_raw ’,
34 ’unit’:’kOhm’},
35 },
36
37 ’alphas1_aux ’: {
38 ’device ’:{
39 ’unique_name ’:’learnAirFixedV1 ’,
40 ’device_type ’:’learnAirFixedV1 ’},
41 ’sensor ’: {
42 ’sensor_type ’:’AlphasenseO3 -A4’,
43 ’metric ’:’O3_raw_aux ’,
44 ’unit’:’raw’},
45 },
46
47
48 ...<many other mappings >...
49
50
51 ’sharpdust ’: {
52 ’device ’:{
53 ’unique_name ’:’learnAirFixedV1 ’,
54 ’device_type ’:’learnAirFixedV1 ’},
55 ’sensor ’: {
56 ’sensor_type ’:’GP2Y1010AU0F ’,
57 ’metric ’:’PM25_raw ’,
58 ’unit’:’raw’},
59 }
60 }.get(x.lower(), None)
61
62 for key in upload_array.keys():
63 learnair_data_upload(
64
65 [{’type’:’organization ’, ’name’:’MIT�Media�Lab’},



89

66 {’type’:’deployment ’, ’post_data ’:{’name’:’LearnAirTestDev
,! ’}},

67 {’type’:’site’, ’post_data ’:{’name’:’RoxburyEPA ’}}],
68
69 switch(key),
70 upload_array[key])

In this example, the key in the switch array describes the excel or csv
column label, and the associated object defines the device and sensor
where data should be uploaded. The non-variable part of the path
(describing the organization, deployment, and site) is given below, in
a list form. After describing this mapping, any files can be uploaded
by simply running the script from the command line, which will
initiate a search prompt for folders/paths to relevant excel files:

1 >> ./ chainExcelPush.py

chainProcessor - scalable, automatic learning for ChainAPI ecosystems

The previous tools for ChainAPI allow us to easily navigate ChainAPI
and perform basic data manipulations with resources and data.
These tools come together in a more advanced tool-kit with chainProcessor–
a set of classes designed to scaffold and promote scalable ChainAPI
algorithms. ChainProcessor crawls through chain, pulls out any data
associated with a given type of sensor, and provides an easy interface
for scientists and data analysts to: (1) write simple raw data process-
ing functions, (2) write more sophisticated calibration algorithms,
and/or (3) write highly sophisticated, auto-updating, predictive
machine learning algorithms. In all of these cases, ’virtual sensors’
representing processed data, calibrated data, or predicted data are
posted back into ChainAPI alongside the original sensor stream.

The cornerstones of chainProcessor are the chainProcessor routine
and the ’processes’ folder, which has a prototype process example
file. The processes folder contains files that must be labeled with the
name of a corresponding ChainAPI Sensor Type (i.e. ’AlphaSenseO3-
A4.py’). The chainProcessor routine automatically pulls the process
names from the processes folder and crawls ChainAPI for the sensor
types that match a defined process. When a resource is found, it
queries the process file to see if additional local data is required for
the data processing step, and then mediates dataflow to and from the



90

process. A prototypical process file for an SHT21 temperature sensor
is shown below:

1 #SHT21Temperture.py
2
3 #every process must have required_aux_data and process_data routines
4 #every process should have its own dispatcher and processing functions
5 #called from the dispatcher
6
7 import numpy as np
8 from .. import machineLearnDatastore
9

10 def dispatcher(metric , unit):
11 #this tells which extra data are required and which functions to use
12 #to process a given metric/unit combination for this sensor type
13
14 return {
15 ’temperature_raw ’: { ’raw’: {
16 ’function ’: raw_to_temp
17 }},
18 ’temperature ’: { ’celsius ’:{
19 ’extra_data ’: [’humidity_corrected ’, ’light_corrected ’],
20 ’function ’: temp_to_learned_temp
21 }}
22
23 }.get(metric , None)[unit]
24
25
26 #all functions should return [sensor_type , metric , unit , data_to_post]
27
28 def raw_to_temp(data):
29 #processes raw SHT21 readings to accurate temperature using datasheet
30 #equation posts to a ’SHT21Temperature ’ sensor measuring ’temperature ’
31 #in ’celsius ’ units on the same device as the ’raw’ SHT21 temp. data
32
33 for data_element in data:
34 data_element[’value’] = -50.0 + 175.72 * (data_element[’value ’] *

,! 10 / (2**(16) ) )
35
36 return(’SHT21Temperature ’, ’temperature ’, ’celsius ’, data)
37
38
39 def temp_to_learned_temp(data):
40 #passes us ’humidity_corrected ’ and ’light_corrected ’ data from the



91

41 #same device if it exists , to use for a more advanced calibration
42 #that accounts for humidity/light effects
43
44 for data_element , humidity in zip(data[’main’], data[’

,! humidity_corrected ’]):
45 data_element[’value’] = -50.0 + 175.72 * (data_element[’value ’] *

,! 10 / (2**(16) - 0.05 * humidity[’value ’])
46
47 return(’SHT21Temperature ’, ’temperature ’, ’celsius_learned ’, data[’

,! main’])
48
49
50 #---- DO NOT EDIT THESE FUNCTIONS ----#
51
52 def required_aux_data(metric , unit):
53 #logic for extra data required by this module: for instance , if we
54 #have an alphasense NO2 -A4 sensor , if we have a raw working electrode
55 #data we also need raw aux electrode data and perhaps raw temp data to
56 #make sense of the reading and create a virtual sensor. This returns
57 #a list of required secondary data for the sensor_type of this file ,
58 #and the metric/unit of that type , so that the main process routine
59 #can traverse , find that extra data , and pass it back to process_data
60 try:
61 return dispatcher(metric , unit)[’extra_data ’]
62 except:
63 return None
64
65
66 def process_data(data , metric , unit):
67 #call logic - depending on metric/unit , call subprocess
68 #return processed data and metric/unit to post
69 try:
70 return dispatcher(metric , unit)[’function ’](data)
71 except:
72 return None
73
74 #---- DO NOT EDIT THESE FUNCTIONS ----#

In this function, the user edits the dispatcher and writes data pro-
cessing functions. The dispatcher defines two key relationships for
a given sensor type, metric, and unit combination– it defines aux-
iliary data, and it defines the name of the function in the process
file that will accept, modify, and return a processed version of that



92

data. The auxiliary data is assumed to be local data on the device or
at the site– for instance, local temperature or humidity readings, or
auxiliary electrode readings, that are required to properly calibrate
a sensor stream. For more advanced algorithms and machine learn-
ing techniques that require extra information and extra state beyond
what is available from the sensor and its neighbors, support func-
tions discussed below can be integrated into these processes to enable
them to learn and update their model over time. These scripts are
user-definable and can be run on any chainAPI instance.

Thus, the main process routine has four main jobs. First, it crawls
and finds sensor data that matches the defined process. Then it looks
at the process dispatcher, and determines which extra local data the
process needs. It pulls all of this data from the resource, and stamps
every datapoint with latitude and longitude information based on
its timestamp, and the available location data (for mobile devices) or
the GPS coordinates (for fixed devices and sites). This data (indexed
on timestamp, latitude, and longitude) is used to call the relevant
process function. The main process then waits for a return list of
post_data for a virtual sensor– the sensor_type, metric, unit, and an
array of data. This return list is posted to ChainAPI at the parent
device of the original sensor.

This structure is already interesting and useful- instead of pre-
processing data and pushing it after a set calibration or after run-
ning opaque, complicated data processing, this model allows (1) easy
updating of calibration and data processing algorithms as they get
better or more refined, (2) more transparent sharing of raw data, pro-
cessed data, and processing routines, and (3) open the opportunity
for manufacturers to track their own hardware, flag anomalies, qual-
ify sensors as they age, and own/improve/update the routines used
for calibrating their sensors.

While this is interesting, the end goal is to enable sophisticated ma-
chine learning with this technique. To that end, a support module
called machineLearnDatastore comes into play.

For the purposes of machine learning, we divide our sensors up
into ’conditions’ and ’measures’. This is an arbitrary distinction, but
generally speaking ’conditions’ are reliable, trusted, simple measure-
ments and API calls that will be used to predict the accuracy of more
complex and less reliable air quality ’measures’. It is possible, using
this technique, to easily add any ’measure’ to a ’conditions’ array
when desired.



93

machineLearnMongo is a helper class that can be used in any pro-
cess. It creates a MongoDB database, with one consolidated collection
for all ’conditions’ (things like temperature and humidity), and one
independent collection for each ’measure’ (things like O3 readings
from AlphaSense O3-A4 sensors). MachineLearnMongo takes care of
saving all of the data whenever a new update comes in, and consoli-
dating conditions into one table. All data in machineLearnMongo are
indexed by timestamp, latitude, and longitude.

The most important part of machineLearnMongo is the ’get_values_in_range’
and ’create_ml_array’ functions. The first of these allows searching
any collection for values within a given time and location window.
The closest values to the ideal time and/or location are returned
if multiple values fall within the window. The second function au-
tomatically pulls all data from a ’measure’ collection, and finds all
the associated ’conditions’ (and additional specified measures) that
were measured within the specified time/location window of each
measure datapoint. This one simple command will examine all mea-
surements that have been crawled by chainProcessor, match all data
that was coincident, and return a full array of features that can be
used to predict and train a machine learning model for the specified
’measures’ array.

At the moment, the user must define which other sensor types a
given sensor should learn from. However, fields are included in this
ontology to automate that process– giving a rank to each sensor, so
that lower quality sensors can automatically learn from any higher
quality reference. This field can be entered manually (by an indepen-
dent and trustworthy testing organization), or programatically by an
algorithm that tracks sensor quality and revises rankings accordingly.

Additionally, the get_values_in_range function returns the actual dis-
tance and delay between two measurements so it may be accounted
for when training on the comparison data. As the dataset grows, it
is possible to automatically and rigorously converge on the useful
range of distance and time offsets (simply by using this information
as another feature in the machine learning feature vector).

machineLearnDatastore . machineLearnMongo ( db )

Initialize a MongoDB database handler instance. This is optimized for machine learning, and everything is indexed by
timestamp, latitude, and longitude.

db ( = ’ l e a r n a i r ’ ) i s the name of the Mongo database



94

machineLearnDatastore . machineLearnMongo . create_indexed_collection ( co l lec t ion_name )

Initialize a MongoDB collection in our database, indexed by timestamp, latitude, and longitude. This is used to initialize
collections of ’measures’.

collection_name i s the name of the new Mongo c o l l e c t i o n t h a t w i l l be created .

machineLearnDatastore . machineLearnMongo . create_condit ions_collection ( co l lec t ion_name )

Initialize a MongoDB collection in our database, indexed by timestamp, latitude, and longitude. This is used to initialize
the database’s collection of ’conditions’. As new conditions are added, only

machineLearnDatastore . machineLearnMongo . add_data_to_collection ( col lect ion_name , data )

Add data to one of the Mongo ’measures’ collections.

collection_name i s the name of the Mongo c o l l e c t i o n we ’ d l i k e to add data to .
data i s the data to be added . Data should be formed as [ { ’ timestamp ’ : x , ’ l a t ’ : y , ’ lon

’ : z , ’ f i e l d t oadd ’ : xyz } , { ’ timestamp ’ : x , ’ l a t ’ : y , ’ lon ’ : z , ’ f i e l d t oadd ’ : xyz } ] .

machineLearnDatastore . machineLearnMongo . add_conditions ( data )

Add data to one the ’conditions’ collections.

data i s the data to be added . Data should be formed as [ { ’ timestamp ’ : x , ’ l a t ’ : y , ’ lon
’ : z , ’ f i e l d t oadd ’ : xyz } , { ’ timestamp ’ : x , ’ l a t ’ : y , ’ lon ’ : z , ’ f i e l d t oadd ’ : xyz } ] .

machineLearnDatastore . machineLearnMongo . pr in t_co l lec t ion ( co l lec t ion_name )

Print collection_name collection to assess data and structure.

collection_name i s the name of the Mongo c o l l e c t i o n we ’ d l i k e to p r i n t .

machineLearnDatastore . machineLearnMongo . print_condit ions ( )

Print ’conditions’ collection to assess data and structure.

machineLearnDatastore . machineLearnMongo . get_collection_data ( col lect ion_name , query )

Access data from the ’collection_name’ collection.

collection_name i s the name of the Mongo c o l l e c t i o n we ’ d l i k e to query .
query (= { } ) i s the query to use on the c o l l e c t i o n . I f l e f t blank , a l l documents i n the

c o l l e c t i o n w i l l be re turned .



95

machineLearnDatastore . machineLearnMongo . get_conditions_data ( query )

Access data from the ’conditions’ collection.

query (= { } ) i s the query to use on the c o l l e c t i o n . I f l e f t blank , a l l documents i n the
c o l l e c t i o n w i l l be re turned .

machineLearnDatastore . machineLearnMongo . return_ml_array ( col lect ion_name , cond i t i ons , measure ,
ex t ra_cond i t i ons , u p d a t e _ c o n d i t i o n s _ f i r s t , t ime_range , la t_ lon_range , loc_then_t ime ,
r e t u r n _ d i f f s )

Creates and returns a machine learning useful array. In summary, it takes the values from the
collection_name, finds conditions in the conditions array that are taken at similar timestamps/latitudes/
longitudes, and combines them into an array where conditions can be used to predict measures.
This array is of the form:

[ { ’ cond i t ions ’ : { ’ keya ’ : val , ’ keyb ’ : va l } , ’ measures ’ : { ’ keya ’ : val , ’ keyb ’ : va l } } ,
{ ’ cond i t i ons ’ : { ’ keya ’ : val , ’ keyb ’ : va l } , ’ measures ’ : { ’ keya ’ : val , ’ keyb ’ : va l } } ,
{ ’ cond i t i ons ’ : { ’ keya ’ : val , ’ keyb ’ : va l } , ’ measures ’ : { ’ keya ’ : val , ’ keyb ’ : va l } } ]

Specifically it adds the fields in ’measure’ from the ’collection_name’ collection (and takes all of them if
none are specified), and pulls ’conditions’ from the conditions collection (pulling all fields if none are
specified) that match the timestamp, latitude, and longitude of the measures. When there is a match-
i.e., when we have conditions that line up with a measure- a new row in the returned machine learn
array is formed. Instead of having to index an exact lat/lon/timestamp match (which is nearly impossible),
this function takes a time_range and a lat_long_range where it considers measurements coincident.
If more than one condition value of the same type qualify as coincident, loc_then_time can be used
to set the more important feature (i.e. whether the closer value in time or the closer value in proximity
takes priority). If multiple conditions entries are ’coincident’ but have different fields, the full union
of fields will be returned. Overlapping fields within these will prioritize the ’closer’ condition.

collection_name i s the name of the Mongo ’ measure ’ c o l l e c t i o n f o r which we ’ d l i k e to
apply machine l ea rn i ng .

conditions {= None ) are the f i e l d s s tored i n the cond i t i ons ar ray we ’ d l i k e to add to
our machine l ea rn i ng ar ray . I f unspec i f i ed (None ) , a l l f i e l d s are used .

measure {= None ) are the f i e l d s s tored i n the col lect ion_name ar ray we ’ d l i k e to add to
our machine l ea rn i ng ar ray . I f unspec i f i ed (None ) , a l l f i e l d s are used .

extra_conditions {= None ) i s a d i c t i o n a r y o f ex t ra c o l l e c t i o n s / f i e l d s t h a t we ’ d l i k e to
add to our cond i t i ons ar ray ( f o r instance , i f we want to add a cheap NO2 sensor ’
measure ’ to our ’ cond i t ions ’ a r ray to p r e d i c t the accuracy o f a cross�s e n s i t i v e O3
sensor ) . This d i c t i o n a r y should be of the form { col lect ion_name : [ f i e l d 1 , f i e l d 2 ] ,
co l lec t ion_name : [ f i e l d 1 , f i e l d 2 ] } .

update_condit ions_first {= True ) w i l l run through a l l i nd i ces i n our cond i t i ons ar ray (
indexed by timestamp / l a t / lon ) and add API c a l l data to each where i t i s missing ,
before cons t r uc t i ng t h i s ar ray .

time_range {= 30) the t ime range , i n seconds , f o r which two measurements are considered
’ co inc iden t ’ .

lat_lon_range {= 1) the range , i n degrees , f o r which two l a t i t u d e or l ong i t ude
measurements are considered ’ co inc iden t ’ .

loc_then_time {= True ) i f two of the same value are co inc i den t w i th the measure i n
col lect ion_name , p r i o r i t i z e the one c lose r i n d is tance ins tead the one c lose r i n



96

t ime i f True .
re turn_di f fs {= True ) add metadata f o r the d i f f e r e n c e i n l a t / lon / t ime between the ’

measure ’ c o l l e c t i o n and the ’ cond i t ions ’ i n t o the cond i t i ons ar ray ( i . e . ’ t i m e _ d i f f
’ , ’ l a t _ d i f f ’ , ’ l o n _ d i f f ’ , ’ d is tance ’ )

machineLearnDatastore . machineLearnMongo . get_values_in_range ( col lect ion_name , timestamp , l a t , lon
, t ime_range , la t_ lon_range , loc_then_t ime , r e t u r n _ d i f f s )

Return one document from collection_name that is the closest fit to timestamp/lat/lon in the ranges
specified (within 30 seconds, 1 degree of lat and lon by default). If there are no documents, return None.
time_range, lat_lon_range, loc_then_time, and return_diffs all operate the same with the same
defaults as return_ml_array above.

Instead of interacting directly with the machineLearnMongo class,
the machineLearnAir class was created as an intermediary. It pro-
vides a scaffolding for adaptive, scalable machine learning algo-
rithms.

MachineLearnAir is designed to manage a machineLearnMongo
class, as well as typical machine learning algorithms that require a
computationally intense ’training’ phase. When data is passed to a
machineLearnAir instance, it is written to a machineLearnMongo
database. The class tracks when a training step was last run, and if
enough new samples (more than update_model_with_x_new_entries)
have been added since the last update, the training step is triggered
to run on all of the data stored in the machineLearnMongo instance
managed by the class. This training step then updates a Mongo rep-
resentation of the machine learning model.

Regardless of whether the training step is called or not, data passed
to the machineLearnAir instance will be passed to the main machine
learning algorithm. This step recalls the model trained in the pre-
vious step and apply it to the input data, returning processed data.
Both the model and the last_updated state are saved, so stopping the
process will not remove the most recent machine learning model.

Any user can add a new machine learning algorithm to the class
simply by writing two functions– an ’algorithm_training’ function,
and an ’algorithm’ function. When passing data to the instance,
simply giving the argument algorithm=’algorithm’ will use the newly
added code.

These functions are scaffolded in the example below– machine learn-
ing input data is pulled from the local machineLearnMongo collec-



97

tion, and the model (once trained in the training phase) should be
stored with a model.post(<state>) command. The main algorithm
function can access that model using the model.get() command, and
should return a list of processed data.

In short, this function manages all of the hard parts of machine learn-
ing. Simply ’run’ it on all data from a given sensor, and it will apply
the latest machine learning model of that sensor to the data and re-
turn it. Whenever it accumulates a large enough batch of new data, it
triggers the ’_training’ step that retrains the model using all available
machine learning data. It automatically recognizes its specified al-
gorithms, so it is easy to add a new algorithm by simply writing the
’algorithm’ function and the ’algorithm_training’ function as shown
in the prototype file below. This makes it easily extensible for all
types of new algorithms and techniques.

1 from machineLearnDatastore import *
2
3 learner = machineLearnAir(collection_name="AlphaSenseNO2" ,

,! update_model_with_x_new_entries =500)
4
5 post_data = learner.run(input_data , algorithm=’svm’)

1 machineLearnAir.py
2
3 <...>
4
5 def svm_train(self , model):
6
7 input_data = self.mongo.get_ml_array () #uses current collection
8
9 <... training a ML model on input_data and store it in model_state

,! ...>
10
11 model.post(model_state)
12
13
14 def svm(self , data , model):
15
16 ml_model_state = model.get()
17
18 <...apply the model to the data...>
19
20 return processed_data



98

Summary

ChainAPI represents a unique and powerful solution to data sharing
and data interaction for sensor networks. It facilitates a scalable,
distributed ecosystem while promoting easy interoperability and low
barriers to entry.

In this thesis, we’ve adapted the ChainAPI ecosystem to address the
needs of air quality community. This new ontology takes into consid-
eration existing practices, as well as future needs of major research
groups, citizen scientists, consumer product designers, and air qual-
ity equipment manufacturers. The development implementation was
built to run and interface with our learnAir hardware and stream
data to/from a smartphone application.

On top of the ChainAPI solution, we’ve also added all of the new
infrastructure explained in detail above. We wrote these new tools
(chainSearcher, chainCrawler, chainTraverser, chainProcessor, machineLear-
nAir, and machineLearnMongo) that look towards a scalable, dynamic
future for ChainAPI, as well as advanced functionality for scrap-
ing ChainAPI, running machine learning algorithms that constantly
update as new data is added to the ecosystem, and reposting pro-
cessed data to the system. This scaffolding– a hypermedia layer to
connect the air quality data ecosystem supporting crawlers that run
through the ecosystem processing data, updating their data process-
ing models using that data, and posting their processed data back to
the ecosystem to be further assessed– is a novel topology for database
design with interesting separation of concerns and transparency.

Besides the big picture ramifications of such a system, it allows us
to accomplish our immediate goal– (1) build a sensor that can post
its data to chain, (2) easily scrape the database for nearby, coincident
measurements of other sensors and ambient conditions, (3) run and
update a machine learning script to predict the accuracy of that sen-
sor’s measurement, and (4) subscribe to a live feed of that processed
data so we can display and update the live prediction of that sensor’s
reliability based on all of the latest ChainAPI data.



7. Data Analysis and Machine Learning

In the last two chapters we outlined the portable hardware we built
to measure air quality and push it up to ChainAPI. We discussed our
new back-end infrastructure to support air quality data, as well as
the tools that were created to allow automatic and extensible machine
learning algorithms. The final element of the system– and the key el-
ement of this project– is the evaluation of predictive machine learning
algorithms in the air quality space. In practice, proximity to quality
sensors may be transient and at varying ranges and angles. Here we
lay a preliminary foundation for such a system using optimal condi-
tions.

For this test, we co-located six types of low-cost air quality sensor
next to EPA reference-level equipment for two months. In most cases
we collected minute-resolution data. The testing occurred over the
course of spring (with high variation in weather as we transitioned
from the end of the cold/snowy winter to the summer).

This experimental design gives us the ability to take the difference
between our low-cost sensor signals and the EPA reference to gen-
erate an error signal. Based on measurements from other sensors
on the device in concert with data from external weather APIs, we
can apply supervised learning techniques that attempt to predict the
magnitude of the error for every reading.

While there are many potential algorithms we could apply to this
problem, for this experiment we simplified our error readings to a
binary feature– indicating whether the cheap sensor was in error
or not, based on an appropriate tolerance around the ground truth
value. This tolerance is empirically chosen based on the ‘noise level’
of the device to be the smallest tolerance possible that still provides
predictable results (i.e., the tolerance is the smallest it can be while
remaining dominated by systematic failure modes instead of the



100

intrinsic measurement imprecision). A logistic regression model–
commonly used for engineering failure prediction– was selected to
predict whether the sensor was in error, as well as assign a proba-
bility to this prediction. This results could be used for many appli-
cations, for example the creation of a pollution map that optimally
leverages data from all pollution sensors everywhere.

Test Conditions and Data Collection Summary

The learnAir V1 sensor was first installed on April 6th, 2016 and
taken down on April 14th. This preliminary test resulted in serious
sensor corrosion and unuseable data.

The useful section of the co-location test ran from April 15th to June
13th (59 days). During that time, several tests were performed. In
total we validated 8 different sensors representing 6 distinct sensor
types over periods ranging from 21 to 59 days. Our co-located test
sets range from 1,431 samples of hourly data up to 85,739 samples of
minute-resolved data.

Figure 24: Weather during Test Period.

From April 15th through May 23rd (38 days with one 40 minute
service break), an older set of AlphaSense O3 and CO electrochemical
gas sensors were characterized. This set was calibrated in Dec 2013 (2
years, 4 months old calibration at the start of the test). 55,589 samples
of minute-resolution data was collected to characterize these sensors.



101

From May 23rd to June 13th (21 days), a brand new set of AlphaSense
O3+NO2, NO2, and CO electrochemical gas sensors were character-
ized (5 month old calibration at the start of the test). 30,150 samples
were collected to characterize these sensors.

The two tests of an older and newer set of the same type of Al-
phasense sensors (O3 and CO) can provide interesting insights–
by comparing the data between the two tests we may be able to draw
insights into age- and use-related differences. By combining the two
sets after calibration, we have a long set of data spanning several
months to test predictive techniques with. Assuming the underlying
failure modes are the same for sensors of the same make/model, this
combined set should be useful at providing insight into the underly-
ing device mechanics.

From April 15th through June 6th (52 days, with two 40 minute ser-
vice outages), a new SmartCitizen sensor– with its NO2 and CO
sensors– was installed and running at the MassDEP site. This sensor
gave 85,739 minute-resolved samples.

Finally, from April 15th through June 13th (59 days), our Sharp Par-
ticulate Sensor collected samples that we resolved to 1 hour intervals,
to match the MassDEP BAM reference. 1,431 samples were collected
from this technique.

Figure 25: Temperature and Humidity
during Test Period.

The co-location tests started with snow on the ground and ended
with summer heat. External temperatures varied from below 5 to



102

above 30 degrees Celcius, and the relative humidity ranged from
20-100%. The weather during the period was nicely varied, with a
few foggy days, a few windy days, and a particularly rainy week in
early May. See Figures 24 and 25 for details, and Appendix D for
more information about trends in ambient pressure, dew, light level,
precipitation amount, and cloud cover over the course of the testing
period.

Overview of Data Pre-Processing and ML Strategy

All readings taken by the co-located sensor were measured in 30 sec-
ond intervals, and timestamped using the on-board Real Time Clock
before being saved to an SD card. Since this was all done offline, no
corrections for the timestamps could be applied.

In general, we found a 0.15-0.25% drift in the RTC timestamps. This
results in 60-200 samples of error every three weeks or so. (The
recorded duration and the actual duration of the measurements
was off by less than 2 minutes over several weeks– the large num-
ber of missing samples comes from a slightly longer delay between
measurements than 30 seconds. In our tests, this delay worked out to
actually be between 30.05 and 30.08 seconds.) To appropriately align
these drifted, 30 second values with our minute-resolved reference
values, we applied two stages of correction. To begin, we corrected
the timestamps to reflect their actual time (assuming a constant delay
between each, and aligning their start and end times with the precise
time the measurements started and ended as measured by a network
connected smartphone). We then linearly interpolated between these
corrected timestamp values to find on-the-minute values for every
minute.

For the hour long samples of BAM data, we had to consolidate our
minute data down to hourly values. To match the process of the
BAM sensor (which collects samples for the first 50 minutes of every
hour, and measures for the last ten), we wrote a script to average
every value in our machine learning arrays over the course of the first
50 minutes of every hour, and throw away the last 10.

This is only the first step of pre-processing the data, however. For our
air quality signals, a calibration step is necessary before comparing
the data and characterizing the sensor. For the SmartCitizen CO and
NO2 sensors, as well as for the Sharp particle sensor, their output



103

is an uncalibrated mV value. In the case of the Sharp sensor, the
reading is inverted from the actual particle level (as it is a measure
of light that makes it through the sensor without scattering). These
sensors were calibrated using a Least Mean Squared Error (LMSE)
approach to optimize a simple scale factor or a scale factor and an
offset. The minimization function was run (1) on all of the data, (2)
with the outliers (> 1 stdev) removed, (3) on long-term averages
of the data, and (3) to only optimize values that were within some
tolerance (throwing out sections that appeared to show disagreement
and instead favoring a tighter fit on aligned data). The most realistic,
quality fit was chosen from amongst these options as the ‘calibrated’
reference.

For the AlphaSense sensors, calibration was even more complicated.
These sensors come with a calibration sheet giving appropriate val-
ues. The formula for most of their sensors is:

ppb =
(we � wezero)� (n ⇤ ae � aezero)

sensitivity

where we is the working electrode measurement in mV, ae is the
auxiliary electrode measurement in mV, wezero is the working elec-
trode offset value in mV, aezero is the auxiliary electrode offset value
in mV, n is a temperature dependent and sensor chemistry depen-
dent scale factor, and the sensitivity is the mV/ppb gain factor of the
instrumentation amplifier on the conditioning board. For the cross-
sensitive O3+NO2 reading, we use the calibrated NO2 values and
subtract the resulting mV offset given the calibrated NO2 sensitivty:

ppb =
(we � wezero)� (n ⇤ ae � aezero)�

no2ppb
x_sensitivity_to_no2

sensitivity

While we tried the provided calibration data– as well as simple
LMSE scaling– we found the best agreement came from LMSE min-
imization using a bounded search of wezero, aezero, and sensitivity.
In these cases, the seed values were the provided calibration terms
from AlphaSense. This type of calibration gave very strong results
compared to other methods.

With calibrated data, an appropriate tolerance was chosen for each
sensor value (typically ±2-15% of the full range, though a larger tol-
erance was chosen for particulate, based on empirical observation of
the smallest useful tolerance. Smaller tolerances that still provide pre-
dictable machine learning outcomes suggest better sensor physics).
Each reading was then classified as ‘correct’ if falling within that
tolerance of the MassDEP reference measurement, or ‘incorrect’ if
falling outside of it.

This data is now ready for machine learning using the logistic regres-



104

sion discussed in the introduction to this chapter. We performed all
of this analysis using python’s scikit-learn machine learning toolbox–
however, some experimentation was done with the java-based (GUI
driven) ‘Weka’ toolkit (using a python ARFF file conversion library),
as well as initial exploration with google’s new tensor-flow library
(which has logistic regression support, but which really shines for its
deep learning ability and large dataset handling). These additions
tools, and additional techniques, will be explored in more depth in
the near future.

The general outline of the machine learning process we applied to
the data is as follows: (1) load in the feature values (approximately
150 of them) to predict our binary error classification, (2) impute (or
fill in) missing values, (3) split our data into training and test sets
used 5-fold cross-validation, (4) run a grid search over logistic regres-
sion parameter-space to find the best regularization coefficient and
penalty terms, (5) train our new ’best model’ using the five training
sets, and (6) verify the results on the five test sets. Importantly, two
types of cross-validation are used– a shuffled type and a chunked
type. In one case, data from the entire two month period is randomly
selected to constitute training and test sets; in the other, the first
several weeks are used to predict the last, the last several are used
to predict the first, etc. The difference in these results gives us im-
portant insight into algorithm robustness and the effect of seasonal
variation on our predictions.

Additionally, we use randomized decision trees to rank the impor-
tance of our features, as well as seven other feature reduction tech-
niques (correlation, linear regression, random forest, lasso, RFE,
ridge, and stability). A reduced set of the top 15 features is then
used to retrain our original Logistic Regression, and the results are
compared. The strength of agreement between feature reduction
techniques can suggest meaningful predictive relationships, and the
relative strength of the classifier with this reduced feature set can also
corroborate strong causality for the top features.

There are two main metrics we use to evaluate our system perfor-
mance. The most obvious metric is to compare the right answer (’is
the sensor actually in error?’) with the predicted one (’do we think
the sensor is in error?’) and display our results in a 2x2 confusion
matrix. We can easily calculate the error rate of our algorithm from
this matrix.

Logistic Regression offers a probability along with its prediction,



105

however, so to fully evaluate the strength of our results we must take
these probabilities into account. Our second evaluation metric– and
the accepted standard for this type of evaluation– is a Receiver Op-
erating Characteristic (ROC) curve. This curve plots the true positive
rate (the number of correct predictions that a measurement is in er-
ror, normalized by the total number of errored air quality readings)
against the false positive rate (the number of incorrect predictions
that a measurement is in error normalized by the total number of
accurate air quality readings). We can compute a point on this graph
by choosing an arbitrary threshold for our probability, and classifying
every measurement as a predicting an error in our reading or not
based on whether the probability that it is falls above or below this
threshold value. If we set our probability threshold at 50%, we find
the point corresponding to our original confusion matrix.

When we plot the points for every threshold value (from 0-100%),
we generate an ROC curve. These curves start at (0,0) and end at
(1,1) on our plot. Random guessing will form a line between the
points at a 45 degree angle. Perfect accuracy with 100% confidence
will form a right triangle– jumping immediately to a value of (0,1)
on our graph before continuing horizontally over and meeting up
with the upper right corner. Real, meaningful predictions will likely
fall somewhere in between. The area under the ROC curve (AUC-
ROC) is normalized to a value between 0 and 1, and frequently used
to characterize the quality of predictions generated by our logistic
regression in a more comprehensive way than a simple confusion
matrix. Generally speaking, values above 0.8 suggest our model has
good-to-excellent predictive power as the number grows closer to
one, and values above 0.7 represent reasonable predictions. Values
below this mark are marginal, with anything close to 0.5 suggesting
total failure.

Once we’ve found the AUC-ROC for our optimized logistic regres-
sion, we compare the results for the 5-fold validation sets (one having
been ‘shuffled’ or randomized, and the other having been ‘chunked’).
The shuffled version assumes no time dependent phenomena– using
randomly chosen samples throughout the entire test to predict ran-
dom other samples interspersed throughout the test. The chunked
version is a more realistic model– using data we’ve already gathered
from one period of time to predict future data.

We must be careful with the shuffled version– errors frequently occur
together in time (a sensor will misread for an hour or two in a row,
giving a few hundred errors at once, likely because of underlying



106

phenomena such as high relative humidity). Monotonically increas-
ing functions (like temperature) could serve as a proxy for time, and
the algorithm might take advantage of this co-occurrence to ‘predict’
our error. This is a classic example of overfit, and by simply look-
ing at the underlying feature and error distributions one can ensure
that the model hasn’t led to incorrect conclusions. This could lead to
artificially strong results in the shuffled case. If we see a strong pre-
dictive relationship for one of these variables in the shuffled case, it is
important to make sure that the variable is not simply monotonic and
co-occurring with one large window of consecutive poor readings.

After verifying the quality of our shuffled results, we can compare
the shuffled and blocked versions of the algorithm. If the shuffled
version still does substantially better than the block-wise version, it
suggests that we haven’t trained on enough data to capture season-
agnostic predictive information. However, when the two agree, it
forms a powerful indication that (1) we’ve captured enough data
to train across seasons, and (2) we have hit upon real and useful
phenomena.

Machine Learning Features

In most of these applications, around 150 features were used to train
our machine learning algorithms. Features were either measured
from the learnAir system or harvested from the Forecast.IO weather
API. A few additional features (the EPA reference black carbon, wind
speed, and wind direction measurements) were all included as train-
ing features. Raw sensor signals are included as well as their cali-
brated versions. Many of these signals were further manipulated or
processed to give more derived features.

The measured set of features represents data collected from on-board
sensors– temperature, humidity, noise, light, vibration, pressure/air-
flow, and other air pollution sensors. We also include the signal from
the sensor whose quality we’re trying to predict as well (if it reads
in certain ranges or slews at a certain rate, we may be able to assume
that the sensor is out of its useful range).

Figure 26: Humidity Derivative Feature
Creation

For most of the main features, we created derivative features to pre-
dict errors resulting from rapid changes in environmental conditions
(anecdotally, we know this to be true for electrochemical sensors).
We also looked at intelligently chosen averages over time– ones that



107

minimized quantization errors, smoothed data to match the EPA ref-
erence, or whose averaging gave evidence of longer term trends that
might also be important in analyzing sensor state and measurement
quality.

Figure 27: Temperature Derivative
Feature Creation

Several API’s were evaluated for use in this project, and Forecast.IO
stood out as a well-reputed option. They use machine learning
to combine many weather forecast APIs into one highly accurate
dataset. The Forecast.IO data comes in hourly intervals, so a running
60 minute average was used to interpolate the values to minute res-
olution (most of the measured fields, like temperature, are relatively
slow-moving). For class-based indicators (for instance, the ‘weather-
summary’ field indicating ‘cloudy’, ‘windy’, ‘foggy’, ‘rainy’, etc) we
converted the API value into binary fields that matched each class.

We created features such as ‘temperature differential’ and ‘humidity
differential’ – a constructed feature that corresponds to the differ-
ence in measurement between the ambient conditions (as measured
by Forecast.IO) and the conditions in the box (as measured by the
SmartCitizen Kit). While these features are linear combinations
of other features (and thus won’t improve our model’s predictive
power), they serve an intuitive purpose, and may help reduce the
feature set (mapping two features to one) if they turn out to be im-
portant indicators of performance.

Finally, we added some features to represent other potentially im-
portant quantities. These features include the time of day (including
features for morning and evening rush hours), the day of the year
(mapping to the season), and the elapsed time since the device was
plugged in (for ‘warming up’ effects).



108

Figure 28: Temperature Inside vs.
Outside the Device during Test Period

Figure 29: Humidity Inside vs. Outside
the Device during Test Period

In general, some small subset of features was removed for each train-
ing session. For instance, the higher quality Alphasense CO sensor
was removed as a feature when training the less capable SmartC-
itizen CO sensor. (Training with this feature gives incredibly high
accuracy at predicting failure, because it is effectively training itself
with the answer.) By training with comparable or cheaper sensors,
we can assess the likelihood of a cheap system working predictably.

In most cases, the EPA reference black carbon sensor data was left
as a feature– while this is not a feasible measurement for a portable,
cheap device, it is still useful to know if black carbon is a strong
predictor of a sensor’s failure. This knowledge allows us to infer
something about how the sensor is failing, and what type of sensor
we might want to pair it with. With this technique, the machine
learning process is not evaluative of a current system’s success–



109

instead, it works as an exploratory tool that might inform a potential
system design.

The next page includes a list of the main features. Processed, cali-
brated, and other derived features extend this list to the complete set.
For histogram plots of many of the main features (made using Weka),
see Appendix D.



110

Feature Type Description

AlphaSense #1 Work Electrode Continuous raw signal from alphasense sensor
AlphaSense #1 Aux Electrode Continuous raw signal from alphasense sensor
AlphaSense #2 Work Electrode Continuous raw signal from alphasense sensor
AlphaSense #2 Aux Electrode Continuous raw signal from alphasense sensor
AlphaSense #3 Work Electrode Continuous raw signal from alphasense sensor
AlphaSense #3 Aux Electrode Continuous raw signal from alphasense sensor
AlphaSense O3 Continuous calibrated signal from raw electrode readings
AlphaSense NO2 Continuous calibrated signal from raw electrode readings
AlphaSense CO Continuous calibrated signal from raw electrode readings
AlphaSense H2S Continuous calibrated signal from raw electrode readings
AlphaSense Temperature Continuous raw signal from alphasense temp sensor
Wind Pressure Reading Continuous raw signal from pressure sensor
Corrected Wind Reading Continuous conditioned pressure signal to relate to wind
Sharp Dust Reading Continuous raw signal from optical particulate sensor
SmartCitizen CO Voltage Continuous raw signal from smartCitizen CO sensor
SmartCitizen NO2 Voltage Continuous raw signal from smartCitizen NO2 sensor
SmartCitizen Noise Voltage Continuous raw signal from smartCitizen Piezo mic
SmartCitizen Humidity Voltage Continuous raw signal from smartCitizen SHT15
SmartCitizen Temperature Voltage Continuous raw signal from smartCitizen SHT15
SmartCitizen Humidity Continuous conditioned smartCitizen Humidity Measurement
SmartCitizen Temperature Continuous conditioned smartCitizen Temperature Measurement
SmartCitizen Light Reading Continuous raw signal from smartCitizen light sensor
SmartCitizen Solar Panel Charge Continuous raw signal from smartCitizen sensor
EPA Sensor Wind Direction Continuous calibrated, accurate EPA reference measurement
EPA Sensor Wind Speed Continuous calibrated, accurate EPA reference measurement
EPA Sensor Black Carbon Continuous calibrated, accurate EPA reference measurement
ForecastIO Apparent Temperature Continuous calibrated api call measurement
ForecastIO Cloud Cover Continuous calibrated api call measurement
ForecastIO Dew Point Continuous calibrated api call measurement
ForecastIO Humidity Continuous calibrated api call measurement
ForecastIO Precipitation Intensity Continuous calibrated api call measurement
ForecastIO Precipitation Probability Continuous calibrated api call measurement
ForecastIO Pressure Continuous calibrated api call measurement
ForecastIO Temperature Continuous calibrated api call measurement
ForecastIO Visibility Continuous calibrated api call measurement
ForecastIO Wind Bearing Continuous calibrated api call measurement
ForecastIO Wind Speed Continuous calibrated api call measurement
ForecastIO Clear Night Boolean calibrated api call measurement
ForecastIO Clear Day Boolean calibrated api call measurement
ForecastIO Partly Cloudy Day Boolean calibrated api call measurement
ForecastIO Partly Cloudy Night Boolean calibrated api call measurement
ForecastIO Cloudy Boolean calibrated api call measurement
ForecastIO Rainy Boolean calibrated api call measurement
ForecastIO Foggy Boolean calibrated api call measurement
ForecastIO Windy Boolean calibrated api call measurement
Morning Hours Boolean created field to correspond to the morning
Afternoon Hours Boolean created field to correspond to the afternoon
Evening Hours Boolean created field to correspond to the evening
Morning Rush Hours Boolean created field to correspond to the morning rush
Lunch Hours Boolean created field to correspond to the lunch
Evening Rush Hours Boolean created field to correspond to the evening rush
Day Hours Boolean created field to correspond to the day
Night Hours Boolean created field to correspond to the night
Outside and Inside Box Temp Differential Continuous Difference between temp out/in box
Minutes Since Plugged In Continuous to help quantify initial terrible readings as sensor settles
Day of Year Continuous day resolution proxy for seasonality

Table 1: Machine Learning Features
used to Predict Sensor Accuracy



111

General Trends in the Data

Before diving into each measurement in detail, we’ll look at the over-
all trends in the data collected by the MassDEP reference sensors
relative to our learnAir sensors. As we can see in Figure ??, there are
four reference measurements taken, each with slower moving trends
as well as clear transient spikes.

We expect transient events in CO, NO2, and black carbon, the direct
by-products of combustion. As noted in the background section,
these pollutants frequently vary with rapid time-scales, and their
transient phenomena have been well characterized. O3 is also known
to have transient events, despite the more complicated reactions
that drive its creation. This behavior has been modeled, and studies
of other cities have shown similar magnitude/duration transient
behavior in measured O3 levels. It is suspected that meteorological
conditions and high NOx are to blame in rapid ozone formation, as
well as large concentrations of other highly reactive VOCs. [81, 82,
83]

Zooming in on these transient events reveals their duration– NO2
transients fall in the minute-duration range, while O3 and CO tend
to sustain for about half an hour at a time. Black carbon is integrated
hourly, so true transient behavior cannot be observed.

The variability of pollutant concentration as a function of tempera-
ture, wind speed, emission flow rate, emission concentration level,
and flue height (which is modeled itself on a variety of parameters)
greatly affects dispersion characteristics. The distance from roadside
and height of these sensors makes it quite plausible that transient
events will disperse before reaching a sensor and occur over longer
time-scales. [23] The lack of clear relationships between time-of-day
and these transients– as well as the relative independence of each
sensor– is not surprising. It does appear a subset of NO2, CO, and
O3 transient events occur close in time, and likely share a causal
link (as would be expected, since they are associated with the same
sources– likely heavy diesel traffic for this installation).



112

Figure 30: Reference Sensors Measure-
ments During Test Period

Figure 31: Two Example Transient
Events Measured by Reference Sensors,
4/25 and 5/22

Generally, we see an inability to capture transient phenomena with
the sensors we tested. The cheaper NO2 and CO sensors on the
SmartCitizen Kit showed no transient behavior. The Alphasense
NO2 also struggled to capture any transient events. The AlphaSense
CO sensors reported a handful of small transients (0.5-1.5 ppm) that
generally appear to match up with real transient events– however,
these transients were generally much smaller in magnitude than the
actual, and most transients were still uncaptured. The AlphaSense O3
sensor similarly captured a handful of transient events, with a closer
match to the appropriate magnitude. Unfortunately, it also missed
about half of the transient events.

These differences are interesting, and can potentially be explained in
a few ways. The SmartCitizen sensors (as expected) simply aren’t of
good enough quality to be sensitive and reactive enough to measure
these differences. They are speced for much higher concentrations
at much lower resolutions. The Alphasense sensors seem to have



113

the ability to respond in the CO and O3 case. These transients are
actually quite long events, so there is no time-constant issue with the
sensor physics. Missed peaks and/or mis-measurments are likely
due to airflow effects– the reference sensor is actively pumping air
through it, while the learnAir sensor is passively receiving airflow
with some bias in its directionality. The successful capture of a few
transients suggest that the sensor physics are fundamentally up to
the task.

NO2 transient events were much shorter duration events, and occur
in the 0-400 ppb range. The response time for a few of the narrower
events could come into play, as the peaks clearly bump up against
our 1-minute resolution (15 second rise time for 500 ppb); however,
this is unlikely to be a primary factor, especially for some of the
several minute transient events. At the end of the day, these are slight
changes in concentration (a few hundred ppb) occurring at much
faster timescales than CO and O3, and it seems that the combination
of these effects in conjunction with airflow made it impossible to
detect. It is worth further investigation to understand whether or not
the sensor itself is capable of detecting these rapid events.

SmartCitizen CO

One SmartCitizen CO sensor was tested against the EPA reference. It
was 1 month old at the time of installation, and ran for 52 days (from
4/15 - 6/6 2016) with two 40 minute service interruptions. This
test gave 74,961 samples of minute resolution data for this machine
learning task.

Pre-processing

Figure 32: SmartCitizen CO Raw Data
(orange) vs. EPA reference (green)

The SmartCitizen CO sensor data comes uncalibrated, as a mV value
that should correlate to CO concentration. The first step was to run a
bounded LMSE minimization on the data in order to scale and offset
it appropriately to match the real data. You can see the final result of
such a scaling in Figure 33. You’ll notice that the LMSE minimization
basically scaled the sensor values down to a minimal amount of
variation. This suggests that the sensor data itself is relatively useless
in this context, which is relatively unsurprising given its working
range and the near constant <1 ppm exposure.



114

Interestingly, the SCAQMD (South Coast Air Quality Management
District) showed good correlation for 5-minute average, 500-1000 ppb
range over their ten day co-location study. Our measurements were a
few hundred ppb lower on average. It’s also unclear which version of
the Smart Citizen sensor SCAQMD tested, as Smart Citizen released
an updated version of their board with completely different CO and
NO2 gas sensors. It appears likely, given the test date, that they were
using a different (though similarly priced) sensor module entirely.

Machine Learning

Machine learning on this data will tell us effectively nothing about
the sensor’s accuracy, since the sensor’s correlation to the correct val-
ues is so poor. We don’t need machine learning to see that the sensor
has failed to predict meaningful values. Instead, applying machine
learning here reduces to a comparison of the real CO concentration to
a (more or less) constant baseline– this means our machine learning
techniques simply attempt to predict when transients and elevated
levels of CO occur at this location using metrological and other sen-
sor data.

Figure 33: SmartCitizen CO with 7.5%
Accuracy Threshold

In this case, the threshold for an ‘accurate’ reading made by the
SmartCitizen CO sensor was set at 7.5% (or ±3.75%) of the full range
of values detected for the actual CO levels, 315 ppb (±157.5 ppb).
Figure 33 shows the Smart Citizen values against the reference, with



115

Error Rates for SmartCitizen CO with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.09 0.09 0.09 0.09
min 0.08 0.03 0.09 0.08
max 0.09 0.12 0.09 0.11

Table 2: Error Rates for Predicting
SmartCitizen CO Accuracy with Logis-
tic Regression

‘accurate’ measurements highlighted with a green background. The
‘inaccurate’ readings are the peaks and large diversions from the
baseline.

As with all of the machine learning models, scikit learn was used
to conduct a parameterized search for the optimal logistic regres-
sion was conducted using parameters C = [0.001, 0.1, 10, 1000] and
penalty-type=[’L1’, ’L2’] with a 2-fold cross-validation. This covers
a reasonable amount of parameter space for the minimal 16 rounds
of training and validation ( 1-2 hours on my i5 laptop). For this test,
an L1 penalty and C=10 regularization term gave the best ROC_AUC
score of 0.82.

We see similar error rates of about 9% error in our predictions re-
gardless of whether we chunk or shuffle the data, or whether we use
the full set of 150 features or just a subset of the top fifteen. The av-
erage confusion matrix (five shuffled trained sets validated on a new
1/5 of the full data-set each time) is shown in Table . The confusion
matrix for the chunked set has similar values.

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 197.0 1187.4

1 108.6 13499.2

Table 3: Average SmartCitizen CO
Confusion Matrix w/Shuffled K-Fold

Though these conditions look the same based on average error rate
and confusion matrix, when we examine the confidence of our pre-
dictions we see some dramatic differences in the shuffled vs. chun-
ked cases. From Figure 34 we can see the shuffled tests resulted in
strong, consistent AUC-ROC scores between 0.81 and 0.83, while the
chunked version resulted in unconvincing, highly variable results
from 0.43 (worse than uneducated guessing) to 0.76. When using
only the top 15 features from a random tree algorithm, we see sim-
ilar trends, however our accuracy drops from slightly above 0.8 to
slightly about 0.7 for the shuffled case (see Appendix D for a list of
the top features selected in this way, and a graph of ROC results for
the same algorithm using just those features).

Table 4 shows the top features for predicting CO variations away
from the baseline, as determined by seven different feature reduction
techniques.



116

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

bkcarbon 1 0 0 1 0.58 0.28 0.93 0.54
avg_60_bkcarbon 0.98 0 0 0.25 0.53 0.15 0.83 0.39
evening 0.17 0 0.07 0.19 0.82 0.18 1 0.35
avg_1440_bkcarbon 0.57 0 0 0.37 0.53 0.44 0.54 0.35
humidity_box_differential 0.1 0 0.01 0.22 1 1 0.02 0.34
afternoon 0.17 0 0.07 0 0.84 0.19 1 0.32
avg_60_forecastio_humidity 0.01 0 0.01 0.12 1 1 0 0.31
temp_sck_box_differential 0.09 0 0 0.45 0.84 0 0.73 0.3
Solar Panel ( V) 0.05 0 1 0 0.77 0 0 0.26
avg_720_bkcarbon 0.65 0 0 0.26 0.27 0.14 0.43 0.25
forecastio_apparentTemperature 0.04 1 0 0.03 0.16 0 0.43 0.24
lmse_avg_30_scaled_arduino_ws 0 0 0 0.05 0.8 0.03 0.79 0.24
forecastio_clear-night 0 0 0.08 0.04 0.91 0.06 0.51 0.23
forecastio_partly-cloudy-day 0.06 0 0.08 0 0.91 0 0.55 0.23
forecastio_partly-cloudy-night 0.01 0 0.08 0 0.89 0.06 0.54 0.23
avg_30_scaled_arduino_ws 0 0 0.02 0.07 0.81 0 0.74 0.23
Noise ( mV) 0.02 0 0 0.11 0.39 0.02 0.92 0.21
avg_720_lmse_scaled_sharpDust 0.03 0 0 0.15 0.55 0.22 0.52 0.21
derivative_avg_720_bkcarbon 0 0 0 0.12 0.63 0.25 0.45 0.21
daily_avg_sck_humidity 0.07 0 0 0.18 0.59 0.17 0.4 0.2
derivative_avg_360_lmse_as_no2 0 0 0 0.11 0.55 0.73 0 0.2
derivative_avg_1440_bkcarbon 0.02 0 0 0.14 0.64 0.02 0.58 0.2
evening_rush 0.13 0 0 0.04 0.49 0.1 0.54 0.19
avg_60_forecastio_pressure 0.07 0 0 0.26 0.41 0.01 0.6 0.19

Table 4: Top Features for Predicting
SmartCitizen CO



117

Figure 34: SmartCitizen CO ROC Curve

The top features– combined with our ROC results– give us insight
into the usefulness of this algorithm for predicting transient fluc-
tuations in CO. The large divergence between shuffled and chun-
ked data suggests we have not collected enough data yet to make
seasonally-agnostic predictions in CO. However, the promising re-
sults in our shuffled data lead us to believe it is possible to make
fairly robust predictions (within or accounting for the season) with
enough data collection. The relationships we find in our shuffled
results are consistent and reliable across test sets.

The top features include black carbon readings, time of day designa-
tions (like evening or night), windspeed measured at the sensor, and
temperature. These are in line with expectation– as a similar combus-
tion byproduct, we would expect black carbon and CO to be closely
related. Heavy traffic (the main source of both black carbon and CO)
has predictable time-of-day patterns. Temperature and windspeed
have been directly correlated to changes in CO concentration, given a
constant, predictable source. Furthermore, we’d expect our prediction
to be based on a complex relationship of many underlying features.



118

The difference in results from the full feature set to the reduce set
corroborates this assumption.

In our test, the SmartCitizen CO sensor provided no meaningful data
when compared and fit against the FRM reference. This changed our
machine learning task from a ‘predict sensor accuracy’ problem to a
‘predict CO transient’ one. Our results indicate a strong likelihood
of making good predictions of transient events for CO with a high
quality black carbon sensor as part of the device. However, these pre-
dictions are complex, and require a lot of diverse sensor data to tease
out a strong prediction. Furthermore, this relationship appears to
be seasonally dependent, and thus an extensive training set– longer
than the two month season change we captured here– is necessary to
predict CO transient behavior with good accuracy.

See Appendix D for more plots outlining the LMSE pre-processing
steps, other accuracy thresholds we attempted, a plot of the SmartC-
itizen data with a correct/incorrect prediction overlay, and the Ran-
dom Tree reduced-feature selection table and corresponding ROC
curves.

SmartCitizen NO2

One SmartCitizen NO2 sensor was tested against the EPA reference.
Like the SmartCitizen CO test, it was 1 month old at the time of
installation, and ran for 52 days (from 4/15 - 6/6 2016) with two
40 minute service interruptions. It gave 74,961 samples of minute
resolution data.

Figure 35: SmartCitizen NO2 Raw Data
Pre-processing

Like the SmartCitizen CO data, the NO2 sensor comes uncalibrated,
as a mV value. The first step was to run a bounded LMSE minimiza-
tion on the data in order to scale and offset it appropriately to match
the real data. You can see the final result of such a scaling in Fig-
ure 36. Once again, the LMSE minimization scaled the sensor values
down to a minimal amount of variation. This suggests that the sen-
sor data itself is relatively useless in this context, which is relatively
unsurprising given its working range and the near constant <1 ppm
exposure. This agrees with spurious test findings for three SmartCiti-
zen NO2 sensors tested by SCAQMD.



119

Machine Learning

This case is similar to the SmartCitizen CO sensor, as machine learn-
ing will tell us nothing of the sensor’s accuracy. It reduces to a differ-
ent problem, instead– predicting NO2 transients and elevated levels
based on metrological and other sensor data.

Figure 36: SmartCitizen NO2 with 10%
Accuracy Threshold

The threshold for accuracy was set at 10% (or ±5%) of the full range
of values detected for the actual NO2 levels, 50 ppb (±25 ppb). Fig-
ure 36 shows the Smart Citizen values against the reference, with
‘accurate’ measurements highlighted with a green background. The
‘inaccurate’ readings are the peaks and large diversions from the
baseline.

As with all of the machine learning models, scikit learn was used
to conduct a parameterized search for the optimal logistic regres-
sion was conducted using parameters C = [0.001, 0.1, 10, 1000] and
penalty-type=[’L1’, ’L2’] with a 2-fold cross-validation. An L1 penalty
and C=1000 regularization term gave the best ROC_AUC score of
0.91.

We see very low error rates of 3-4% on average with our predictions,
regardless of the size of our feature set and whether the validation
was randomized or chunked. This is corroborated by very strong
performance in the average confusion matrix (Table ). Our ROC
curves show tight agreement for the shuffled test sets of 0.90-0.92



120

Error Rates for SmartCitizen NO2 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.03 0.05 0.03 0.04
min 0.03 0.02 0.03 0.02
max 0.03 0.08 0.04 0.06

Table 5: Error Rates for Predicting
SmartCitizen NO2 Accuracy with
Logistic Regression

AUC-ROC, while the chunked version lags behind slightly with
scores from 0.69-0.83. These results show evidence of extremely
strong predictive power, though they hint that we haven’t collected
quite enough data to completely account for seasonal variation (even
though we’re doing well enough with the chunked test sets to predict
with good confidence).

Figure 37: SmartCitizen NO2 ROC
Curve

We see similar error rates with all features as for a subset of the top
fifteen. Examining the AUC-ROC shows that when training only
with the top features, the score drops from 0.9 to 0.8 – a substantial
drop, but proof that the top fifteen account for a very strong predic-
tion on their own.

The top features are similar to those that predicted the CO transients,
but with a stronger relationship– black carbon is a leading indicator,
as well as humidity, the hour of the day, and CO level. These all
make sense as correlates– CO and black carbon are produced by
traffic, which has a predictable pattern with the time of day. Table 6)
shows the top features given seven feature selection algorithms.



121

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

bkcarbon 1 0 0 1 0.63 0.51 0.85 0.57
daily_avg_sck_humidity 0.11 0 0 0.32 0.67 1 0.76 0.41
hour_of_day 0.07 0.92 0 0.1 0.42 0.02 1 0.36
avg_60_bkcarbon 0.92 0 0 0.08 0.59 0.25 0.69 0.36
derivative_avg_1440_lmse_calib_as_co 0.06 0 0 0.05 0.62 0.38 1 0.3
Solar Panel ( V) 0.03 0 1 0 0.88 0 0 0.27
lmse_sck_co 0.01 1 0 0.02 0.85 0 0 0.27
derivative_avg_1440_bkcarbon 0.05 0 0 0.07 0.71 0.1 0.99 0.27
humidity_box_differential 0.02 0 0.04 0.11 1 0.61 0 0.25
forecastio_partly-cloudy-night 0.03 0 0.16 0.02 0.95 0.11 0.42 0.24
avg_60_forecastio_humidity 0 0 0.04 0.06 1 0.61 0 0.24
day 0.07 0 0 0 0.97 0.05 0.51 0.23
night 0.07 0 0.01 0 0.98 0.05 0.43 0.22
avg_60_forecastio_precipProbability 0.04 0 0 0 0.6 0.49 0.44 0.22
daily_avg_forecastio_humidity 0.03 0 0 0.05 0.66 0.48 0.24 0.21
forecastio_rain 0.03 0 0.16 0 0.9 0.25 0.04 0.2
forecastio_humidity 0 0 0 0 0.64 0.72 0 0.19
forecastio_clear-night 0.02 0 0.16 0 0.93 0.03 0.1 0.18
forecastio_fog 0 0 0.16 0 0.9 0.21 0 0.18
forecastio_wind 0.01 0 0.16 0 0.92 0.18 0 0.18
avg_720_bkcarbon 0.47 0 0 0.05 0.54 0.07 0.12 0.18
avg_30_ws 0.13 0 0 0.08 0.45 0.02 0.48 0.17
avg_15_derivative_sck_temperature 0 0 0 0.04 0.63 0.5 0.01 0.17
avg_720_lmse_scaled_sharpDust 0.01 0 0 0.16 0.58 0.41 0 0.17

Table 6: Top Features for Predicting
SmartCitizen NO2

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 142.0 427.0

1 52.6 14370.2

Table 7: Average SmartCitizen NO2
Confusion Matrix w/Shuffled K-Fold

Once again, there seems to be strong evidence that NO2 transients
are highly predictable if there are other, good quality sensors that
measure related phenomena (like black carbon and CO) to rely on.
The relationship is a complex one that requires a larger feature set
and a lot of training data for optimal performance, but it appears that
even in the short two month period we were able to train a model
that would work well under realistic conditions.

Sharp Dust Sensor

One Sharp optical particulate sensor was tested against the EPA black
carbon reference. It was 1 month old at the time of installation, and
ran for 59 days (from 4/15 - 6/13 2016) with two 40 minute service
interruptions. This test gave 1,431 samples of hour resolution data.



122

Pre-processing

The Sharp sensor is a common choice for cheap air quality sensing
projects, but is generally known as a simple device that can strug-
gle in outdoor conditions. The signal from the sensor is a raw light
magnitude, so to convert it to µg/m3 requires an inversion and basic
scaling. After inversion, a LMSE optimization was applied against
the reference sensor. Instead of a straight LMSE algorithm, though,
the cost function was modified to include only the values that were
within 5% of the reference signal. This eliminates minimization errors
due to regions where the sensors are mis-reading and mismatched.
This technique clearly out-performed the standard LMSE techniques
tried (overall LMSE, LMSE without ‘outliers’ more than one standard
deviation away, etc). This method worked well, and the sensor clearly
followed the general trend of the EPA reference in many cases. See
Figure 38 for an example.

Figure 38: Sharp Particulate LMSE
Calibration

The reference sensor, for its part, labels readings in the following



123

way: a ‘10am reading’ of EPA sensor is recorded on filter paper from
10a-10:50a, then measured with an optical attenuation technique
from 10:50-11a. Thus, we averaged the 50 minute readings starting
on the hour and threw away the last ten minutes. After comparison,
we added features with 6-, 12-, and 48- hour averaging. The 48 hour
measurement was also run through a LMSE process and used for
machine learning (see Figure 39).

Figure 39: 2 day Average Sharp Particu-
late LMSE Calibration

Machine Learning

Machine learning on this data can provide us with useful insights
about our ability to predict when the sensor works and when it does
not. The main test was run on errors using a 30% tolerance– 0.56
µg/m3. Besides running our algorithm on the standard LMSE min-
imized signal, we also ran it using tried it using a 15% tolerance
(0.23µg/m3), and 48-hr average with a 30% tolerance based on its
max value (0.29µg/m3). Figure 40 shows the main comparison with a



124

Error Rates for Sharp Sensor with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.17 0.22 0.22 0.25
min 0.14 0.18 0.20 0.14
max 0.20 0.29 0.24 0.36

Table 8: Error Rates for Predicting
Sharp Accuracy with Logistic Regres-
sion

30% accuracy overlay.

Since this test uses hourly data, it is much faster to train and test a
model. It also means we have much less data to draw strong conclu-
sions with. In this case, we used a complete five fold validation to
optimize our logistic regression parameter search of C = [0.001, 0.1,
10, 1000] and penalty-type=[’L1’, ’L2’]. We found the best parameters
were C=1 with an L1 penalty. For the tighter tolerance, an L2 penalty
was more successful, and for the average values, C=10 worked best.

Figure 40: Sharp Particulate with 30%
Accuracy Threshold

Error rates in Table 8 show that we have a large difference between
shuffled and chunked techniques, indicating we have no captured
enough data to make fully seasonally robust predictions. The error
rates are also relatively high.

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 58.0 35.2

1 14.0 179.0

Table 9: Average Sharp Particulate
Confusion Matrix w/Shuffled K-Fold

Despite the high error rates, our AUC-ROC curve shows strong re-
sults (0.86 to 0.88 shuffled, 0.71 to 0.95 chunked)– this suggests we’re
good at reporting the strength of our prediction (i.e., when we’re
wrong we reliably report the likelihood of a correct prediction close



125

to 50%, whereas when we’re right we reliably report a likelihood
closer to 100%).

Figure 41: 48-hour Average Sharp
Particulate ROC

For 48-hour average data, we half the error rate in the shuffled case
(down to 0.08), though the chunked case remains nearly the same.
(As a reminder, this is with a tighter absolute error tolerance as well,
of ±0.15 µg/m3 instead of ±0.28). We see dramatic results in the
ROC curve for the shuffled case– an average of 0.98 AUC-ROC. These
are very promising indicators that we can be extremely reliable in our
prediction of certainty for each reading, especially with the averaged
data.

Figure 42: Sharp Particulate ROC Curve

Our top 15 features do a relatively strong job on their own with these
predictions, giving AUC-ROC values of 0.80-0.83 and 0.68-0.94 for
the shuffled and chunked cases. The top features for predicting par-
ticulate are derived from the Sharp sensor itself– certain ranges of
the sensor are more prone to error than others (high readings are
less reliable). The other top features (Table 10) make sense given the
physics of the device– changes in NO2 seems to be a good indicator
of sensor performance, as well as humidity level. (We would expect



126

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

sharpDust 1 0.65 0 1 0.81 0.03 1 0.64
lmse_scaled_sharpDust 1 0 0.03 0.65 0.83 0 0.98 0.5
scaled_sharpDust 1 0 0.02 0.65 0.83 0 0.91 0.49
avg_12_scaled_sharpDust 0.88 0 0 0.06 0.49 0.77 0.55 0.39
derivative_lmse_avg_15_as_no2 0 0 0.99 0 0.97 0.15 0.02 0.3
derivative_avg_15_lmse_as_no2 0 0 1 0 0.97 0.15 0.01 0.3
derivative_avg_48_scaled_sharpDust 0.01 0 0.99 0.01 1 0.01 0 0.29
derivative_lmse_avg_48_scaled_sharpDust 0.01 0 0.89 0.03 1 0.01 0 0.28
temp_as_box_differential 0.01 1 0 0.22 0.47 0.13 0.05 0.27
sck_humidity_saturated 0.11 0 0 0 0.61 1 0.01 0.25
Nitrogen Dioxide ( kOhm) 0.18 0.06 0 0.02 0.72 0 0.67 0.24
daily_avg_sck_humidity 0.24 0 0 0.05 0.6 0.69 0 0.23
lmse_sck_no2 0.18 0 0 0.02 0.72 0 0.67 0.23
avg_48_scaled_sharpDust 0.45 0 0.02 0.01 0.88 0.18 0.07 0.23
lmse_avg_48_scaled_sharpDust 0.45 0 0.02 0.01 0.87 0.2 0.06 0.23
forecastio_wind 0 0 0 0 0.96 0.58 0 0.22
derivative_as_no2 0 0 0 0 0.99 0.57 0 0.22
o3 0.1 0.25 0 0.06 0.14 0.01 0.85 0.2
derivative_Carbon Monxide ( kOhm) 0 0 0.36 0.03 0.99 0.01 0 0.2
derivative_lmse_sck_no2 0 0 0.45 0.01 0.86 0 0 0.19
derivative_lmse_sck_co 0 0 0.31 0.02 0.98 0.01 0 0.19
daily_avg_forecastio_humidity 0.29 0 0 0.02 0.46 0.41 0.05 0.18
forecastio_rain 0.08 0 0 0 0.92 0.18 0 0.17
alphaTemp 0 0 0 0.01 0.75 0.39 0 0.16

Table 10: Top Features for Predicting
Sharp Particulate

higher humidity to result in fog and condensation around particles
that disperse light and increase reading error).

These results are very promising. They indicate extremely strong pre-
diction performance, especially when comparing long-term averages.
They suggest we need to collect more data under more conditions
before we are ready to predict across seasons. There is one caveat,
however. In this test, the threshold for what is considered a ‘cor-
rect’ measurement is quite high, at 30% of the full range of observed
values (0.6 µg/m3 for the standard test). This is a useful resolution,
however it is a constrained choice. When we cut this tolerance in
half and retrain our models– see Appendix D for more details– the
predictive quality starts to drop. The effect of this threshold on pre-
dictive reliability of our model can provide an indication of sensor
precision. We can very accurately predict large errors with this sen-
sor, but the inherent ‘noise floor’ of the device limits that predictive
strength as we tighten our tolerance.



127

See Appendix D for more plots outlining the raw data, more infor-
mation on the models with different accuracy thesholds and averag-
ing, plots of the data with a correct/incorrect prediction overlay, and
the Random Tree reduced-feature selection table and corresponding
ROC curves.

AlphaSense CO

Two AlphaSense CO sensors were tested against the EPA reference.
The first sensor was 2.5 years old at the time of installation, which
ran for 38 days (from 4/15 to 5/23 2016 with one 40 minute service
interruption). The second sensor was 2 months old at the time of
installation, and ran for 21 days (from 5/23 - 6/13 2016). Our first
test gave 55,589 minute-resolution samples to compare, our second
test gave 30,150 samples.

These two tests give us a chance to compare manufacturer reliability
and sensor aging effects. The two datasets can also be combined after
calibration to draw overall conclusions about the AlphaSense model
CO-A4 sensor.

Pre-processing

AlphaSense sensors give two main readings– from an auxilary and
a working electrode. Additionally, they come with a calibration for
sensitivity, as well as offset voltages for both electrodes. The calibra-
tion function combines all of these using a non-linear temperature-
dependent term (which scales the working electrode term differently
over a few temperature ranges, linearly interpolated).

While we used the provided calibration data to create one version
of ‘corrected data’, we’ve found from talking with faculty in the
Environmental Engineering group that it is not uncommon for these
laboratory based calibrations to drift substantially. It is generally
considered best practice to calibrate the sensors using co-location
data. The datasheet calibration provides results as seen in Figure 43.

One of the first things to notice is what appears to be quantization
errors in the data. This is not a result of the analog to digital conver-
sion process on the Arduino– we have a 5V, 10-bit input, which gives



128

Figure 43: AlphaSense CO Sensor 1
Raw Data Zoomed

us 4.88 mV resolution. Our sensor has around 0.3 mV/ppb sensi-
tivity, so we expect our ADC to quantize the signal in 16ppb steps.
The AlphaSense analog frontend board for the CO sensor is only ca-
pable of a 20 ppb noise level, so the limiting factor is not our ADC.
Examination of the raw Arduino data supports this assumption.
This ‘quantization’ is actually the result of temperature dependent
regimes in the calibration equation. At 10, 20, and 30 degrees Cel-
cius we enter different linear temperature correction regimes– even
though these are interpolated, the temperature dependence rapidly
changes in a narrow span.

The proper way to ‘correct’ these calibrations is worthy of a paper
by itself. Several techniques were attempted, mostly based on LMSE.
We tried basic scaling/offset the datasheet calibrated data as well as
scaling/offset the data considering only one standard deviation of
the mean for each sensor (in order to remove outliers). We also at-
tempted several more intuitive minimizations– for instance, solving
for a new sensitivity and offset voltages (using the actual calibration
equation) seeded with the datasheet values. Additionally, we tried
minimizing by solving for new temperature dependence terms, in
case the actual thresholds or scale factors were shifted slightly. Fi-
nally, we tried non-standard minimization strategies– setting thresh-
olds for the values that are part of the cost minimization calculation,
and using absolute error (since LMSE penalizes larger errors more,
and we really want to ignore the larger errors without incentivizing a



129

cost function to create larger errors).

In general, the high frequency trends and sensitivity of the sensor
are very in line with real pollutant concentration. The large, nearly
step-wise variations due to temperature compensation seem to be the
biggest issue with close tracking of the actual data. Most LMSE tech-
niques aimed specifically at this temperature dependence completely
eliminated the behavior– while this tracks the real signal better, it
also gives a less dynamic signal with an unrealistic underlying as-
sumption (that the sensor actually has no temperature dependence).
With a more thorough understanding of how these sensors age and
change, it may be easier to design an intuitive minimization for bet-
ter calibration. For the purposes of this test (and the tests with other
AlphaSense gas sensors), we minimized error by solving for new
electrode offset voltages only. The results of this strategy for both the
older and newer sensors can be seen in Figures 44 and 45.

Figure 44: AlphaSense CO Sensor 2
after LMSE Calibration



130

Error Rates for CO Sensor 1 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.18 0.21 0.20 0.20
min 0.17 0.17 0.19 0.12
max 0.18 0.28 0.20 0.28

Table 11: Error Rates for Predicting
CO Sensor 1 Accuracy with Logistic
Regression

Machine Learning

Both sensors were treated independently to start, and their output
was compared. Agreement between the two can provide us with
high confidence about underlying mechanisms. Both were optimized
using a grid based parameter search of C = [0.001, 0.1, 10, 1000] and
penalty-type=[’L1’, ’L2’] with a 2-fold cross-validation. Both gave the
same optimum model using an L1 penalty and C=1000. The older
sensor gave an AUC-ROC of 0.89, while the newer one gave 0.90.
Figure 45 shows the comparison of the reference with our calibrated
data, using a 5% tolerance (around ±100 ppb, a relatively ambitious
tolerance).

Figure 45: AlphaSense CO Sensor 1 and
2 with 5% Accuracy Threshold

The error rates of table 11 and 12 show relatively robust behavior
from the entire feature set to just the top fifteen. The older sensor
has slightly elevated error rates compared to the newer one, but it
also saw more dynamic weather conditions. High variability in the
chunked error rates suggests we haven’t trained on enough data yet.



131

Error Rates for CO Sensor 2 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.14 0.20 0.16 0.17
min 0.13 0.10 0.15 0.11
max 0.14 0.28 0.16 0.22

Table 12: Error Rates for Predicting
CO Sensor 2 Accuracy with Logistic
Regression

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 4751.0 943.0

1 1023.4 4400.4

Table 13: Average AlphaSense CO
Sensor 1 Confusion Matrix w/Shuffled
K-Fold

Despite the larger error rates, our AUC-ROC curves show reasonably
good results– 0.89-0.90 for the shuffled, and 0.69-0.91 for the chun-
ked. This is slightly better for the second, newer sensor (0.90-0.91 and
0.72-0.91). The results are thus quite promising in their predictive
merit.

When we reduce the feature set to 15 features, we drop in accuracy
to the mid- to high- 0.8s, but the agreement across sensors and across
chunked and shuffled strategies is the highest we’ve seen so far.
This stands out as a reasonably well executed model– it has verified
predictive value, and it appears to agree with itself across season
and across sensor. The top features– the sensor itself, NO2, black
carbon, humidity, temperature, and windspeed– are all common
sense candidates for this type of sensor.

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 1326.2 623.0

1 200.4 3880.4

Table 14: Average AlphaSense CO
Sensor 2 Confusion Matrix w/Shuffled
K-Fold

See Appendix D for more plots outlining the raw data, more infor-
mation on the models with different accuracy thresholds and averag-
ing, plots of the data with a correct/incorrect prediction overlay, and
the Random Tree reduced-feature selection table and corresponding
ROC curves.



132

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

as_co 0.95 0.29 0 1 0.64 0 0.51 0.48
lmse_calib_as_co 0.95 0 0 0.68 0.65 0 0.59 0.41
avg_60_forecastio_humidity 0.29 0 0.01 0.03 1 0.73 0.59 0.38
forecastio_wind 0 0 0.05 0 0.76 0.54 1 0.34
sck_temperature 0.92 0 0 0.02 0.98 0 0.44 0.34
alphaS2_work 0 1 0 0.02 0.25 0.01 1 0.33
alphaTemp 0.94 0 0 0 0.92 0 0.48 0.33
as_temperature 0.94 0 0 0 0.91 0 0.46 0.33
humidity_box_differential 0.14 0 0.01 0.04 1 0.73 0.37 0.33
avg_15_as_temperature 0.99 0 0 0.02 0.57 0.16 0.49 0.32
avg_720_lmse_scaled_sharpDust 0.02 0 0 0.03 0.54 1 0.68 0.32
Temperature ( C RAW) 0.92 0.07 0 0.02 0.63 0 0.45 0.3
Solar Panel ( V) 0.14 0 1 0 0.95 0 0 0.3
forecastio_temperature 0.68 0.09 0 0 0.87 0 0.37 0.29
avg_60_forecastio_temperature_c 0.7 0 0 0.03 0.97 0.09 0.25 0.29
evening 0.02 0 0.1 0.02 0.99 0.04 0.81 0.28
night 0.18 0 0.05 0 1 0.11 0.59 0.28
day 0.18 0 0.05 0 0.96 0.11 0.6 0.27
forecastio_temperature_c 0.68 0 0 0 0.88 0 0.31 0.27
morning 0.01 0 0.1 0 1 0.12 0.61 0.26
avg_60_forecastio_cloudCover 0 0 0 0.04 0.48 0.29 1 0.26
forecastio_humidity 0.28 0 0 0 0.55 0.26 0.69 0.25
derivative_avg_720_lmse_scaled_sharpDust 0 0 0 0.01 0.61 0.15 1 0.25
hour_of_day 0.02 0.41 0 0.01 0.22 0.01 1 0.24

Table 15: Top Features for Predicting
AlphaSense CO Sensor 1



133

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

lmse_calib_as_co 1 0.1 0 1 0.18 0 1 0.47
evening 0 0 0.01 0.01 0.96 0.04 0.99 0.29
avg_60_forecastio_windSpeed 0.3 1 0 0.15 0.06 0 0.55 0.29
Solar Panel ( V) 0.11 0 1 0 0.86 0 0 0.28
forecastio_windSpeed 0.27 0.62 0 0.02 0.29 0.01 0.72 0.28
sck_humidity_saturated 0.05 0 0 0 0.59 1 0.33 0.28
avg_15_as_no2 0.4 0.29 0 0.01 0.73 0 0.36 0.26
forecastio_fog 0.11 0 0.71 0 0.94 0 0 0.25
as_o3 0.41 0.08 0 0.01 0.72 0 0.5 0.25
derivative_avg_1440_lmse_scaled_sharpDust 0.14 0 0 0.01 0.6 0.03 0.99 0.25
as_no2 0.41 0 0 0 0.71 0.01 0.53 0.24
lmse_as_no2 0.41 0 0 0 0.73 0 0.48 0.23
lmse_avg_15_as_no2 0.4 0 0.01 0.01 0.81 0 0.41 0.23
bkcarbon 0.05 0 0 0.13 0.5 0.1 0.81 0.23
avg_15_derivative_sck_temperature 0 0 0 0.01 0.57 0.41 0.53 0.22
daily_avg_forecastio_temperature 0.22 0 0 0.03 0.45 0.1 0.71 0.22
avg_15_lmse_as_no2 0.4 0 0.01 0.01 0.82 0 0.3 0.22
derivative_avg_360_lmse_as_no2 0 0 0 0.02 0.59 0.31 0.62 0.22
avg_60_bkcarbon 0.06 0 0 0.07 0.55 0.15 0.73 0.22
afternoon 0.13 0 0.01 0 0.97 0.06 0.31 0.21
avg_720_bkcarbon 0.02 0 0 0.18 0.53 0.06 0.69 0.21
alphaS2_work 0.02 0.61 0 0.03 0.23 0.02 0.49 0.2
avg_60_as_no2 0.39 0.01 0 0.02 0.99 0 0 0.2
avg_15_lmse_calib_as_co 0.94 0 0 0.05 0.05 0 0.35 0.2

Table 16: Top Features for Predicting
AlphaSense CO Sensor 2



134

Figure 46: AlphaSense CO Sensor 1
ROC Curve

Figure 47: AlphaSense CO Sensor 2
ROC Curve



135

AlphaSense NO2

One AlphaSense NO2 sensor was tested against the EPA reference.
It was 2 months old at the time of installation, and ran for 21 days
(from 5/23 - 6/13 2016). This test gave 30,150 minute resolved sam-
ples.

Pre-processing

The AlphaSense NO2 raw data has similar concerns to its CO counterpart–
it appears heavily ‘quantized’ based on the temperature regime it
is in. The NO2 values were much further off than the CO values
though, using the raw calculation.

Figure 48: AlphaSense NO2 Raw Data
Zoomed

Many techniques were used to tighten up the calibration after apply-
ing the initial datasheet equation and values, some of which greatly
alter the variation, but at the end of the day a milder form was cho-
sen based on scaling the electrode offsets. The final results can be
seen in Figure 49.

Machine Learning

NO2 has some of the smallest variations of the pollutants we looked
at. To assess its accuracy, 10% of its full scale value was used as
a tolerance– this worked out to a very tight tolerance of ±26.25
ppb. With this tolerance in place, our parameterized search of C =
[0.001, 0.1, 10, 1000] and penalty-type=[’L1’, ’L2’] with a 2-fold cross-
validation yielded an optima set of L1 penalty with C = 1000.

Even with this extremely tight tolerance, we can see in Table 17 that
we have very low average error rates in all conditions, though our
variability dramatically increases for the chunked cases. In conjunc-
tion with the ROC graphs of Figure 50 we can see that our seasonal
predictive power is quite poor. This isn’t unexpected, as this test (a
three week test) was one of the shortest performed.



136

Figure 49: AlphaSense NO2 with 10%
Accuracy Threshold

Error Rates for AlphaSense NO2 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.03 0.06 0.04 0.04
min 0.03 0.05 0.03 0.01
max 0.03 0.14 0.04 0.14

Table 17: Error Rates for Predicting Al-
phaSense NO2 Accuracy with Logistic
Regression

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 116.2 130.2

1 34.0 5749.6

Table 18: Average AlphaSense NO2
Confusion Matrix w/Shuffled K-Fold

What is incredibly interesting here is that we see excellent predic-
tive power with the shuffled case (AUC-ROC scores in the 0.96-0.97
range), contrasted with terrible scores for the chunked case (more
frequently worse than random chance than not). As alluded to, this
points to a lack of data for robust pattern-finding. The errors that
co-occur in each period of time have uniquely defining features, but
there are so few of them that no general pattern has emerged yet to
define them all. The incredibly strong results in the shuffled case
does not eliminate the possibility that there is a strong relationship to
take advantage of here, but in general this test is inconclusive about
the predictability of the NO2 sensor. The divergence of the shuffled
and chunked cases strongly points to a need for more data before
hard conclusions can be drawn.

The top features (Table 19) and the effect of reducing the feature set
aren’t particularly meaningful given our prior conclusion, but the
fact that black carbon, cloud cover, and O3 concentration are in the



137

Figure 50: AlphaSense NO2 ROC Curve

top several features (and these features seem to do a good job pre-
dicting robustness in the shuffled case by themselves) bolsters the
hypothesis that there is likely a useful, predictable trend underlying
this data. We would expect our high quality correlated sensor to pro-
vide a good backbone for prediction, and cloud cover and O3 directly
point to one of the most rapid and important reactions that converts
NO2 to other by-products. Since these highly relevant features drive
our strong shuffled predictions (as oppose to spurious, coincidental
ones), it seems likely that this AlphaSense NO2 sensor will be highly
predictable with a few more weeks of data collection.



138

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

bkcarbon 0.99 0 0 0.85 0.47 0.23 0.79 0.48
avg_60_bkcarbon 1 0 0 1 0.54 0.14 0.64 0.47
avg_1440_bkcarbon 0.9 0 0 0.16 0.5 0.44 0.69 0.38
daily_avg_sck_humidity 0.36 0 0 0.03 0.59 0.77 0.39 0.31
as_o3 0.02 0 0 0.97 0.77 0.01 0.42 0.31
lmse_sck_co 0.06 1 0 0.01 0.81 0 0.28 0.31
avg_60_forecastio_cloudCover 0.16 0 0 0.11 0.53 0.38 0.81 0.28
Solar Panel ( V) 0.05 0 1 0 0.87 0 0 0.27
derivative_avg_1440_bkcarbon 0.17 0 0 0.04 0.62 0.08 1 0.27
sck_humidity_saturated 0.04 0 0 0.01 0.58 1 0 0.23
avg_720_lmse_scaled_sharpDust 0 0 0 0.37 0.57 0.67 0.01 0.23
avg_720_bkcarbon 0.85 0 0 0.2 0.16 0.06 0.35 0.23
evening 0.05 0 0 0 0.95 0.04 0.47 0.22
day 0.06 0 0 0 0.99 0.06 0.42 0.22
night 0.06 0 0 0 1 0.06 0.41 0.22
alphaS2_work 0.31 0.78 0 0.02 0.21 0.05 0.09 0.21
forecastio_fog 0.05 0 0.4 0 0.93 0 0 0.2
forecastio_temperature_c 0 0 0.01 0 0.93 0.01 0.44 0.2
derivative_avg_720_bkcarbon 0.09 0 0 0.05 0.61 0.15 0.5 0.2
forecastio_temperature 0 0 0 0 0.92 0.01 0.41 0.19
Carbon Monxide ( kOhm) 0.06 0 0 0.01 0.82 0 0.34 0.18
forecastio_cloudCover 0.19 0 0 0.01 0.44 0.17 0.48 0.18
forecastio_partly-cloudy-day 0.05 0 0.04 0 0.89 0.01 0.23 0.17

Table 19: Top Features for Predicting
AlphaSense NO2



139

AlphaSense O3

Two AlphaSense O3 sensors were tested against the EPA reference.
The first sensor was 2.5 years old at the time of installation, which
ran for 38 days (from 4/15 to 5/23 2016 with one 40 minute service
interruption). The second sensor was 2 months old at the time of
installation, and ran for 21 days (from 5/23 - 6/13 2016). Our first
test gave 55,589 minute-resolution samples to compare; our second
test gave 30,150 samples.

Age is an important distinction between the two sensors, which
makes this an interesting comparison. Additionally, while the first
O3 sensor was only calibrated for O3 measurement, the second sen-
sor was calibrated as an O3+NO2 sensor (to be used in conjunction
with the NO2 sensor on the board). This presents a different calibra-
tion process- while the second sensor should be more accurate (as
both are cross-sensitive to NO2), it depends on the accuracy of the
NO2 characterization. The second sensor has a more complicated
calibration equation, and thus introduces more opportunity for drift
in the calibration process.

Pre-processing

The raw data for the O3 sensors is some of the most convincing
we’ve recorded with a sensor at this price-point. The calibrated val-
ues for both sensors track the real values quite well, and even capture
a few transients. A small sample of the datasheet-calibrated values
is shown in Figure 51– for a look at all of the raw data, please check
Appendix D.

The preprocessing step followed similar guiding principles as the
other AlphaSense sensors. The final results for both sensors can be
seen in Figure 93 (Sensor #1 on the left of the dotted line and Sensor
#2 on the right).

Machine Learning

O3 varies the least of the pollutants we measured, and our 15% tol-
erance of full scale works out to be ±15 ppb. This is extremely tight–
the analog board is only rated for ±10. The great thing is that a little



140

Figure 51: AlphaSense O3 Sensor 1 Raw
Data Zoomed

less than half of our readings actually fall into that very strict toler-
ance. It may, however, be unrealistic to demand this level of precision
from this sensor.

Our two fold search of the parameter space for both old and new O3
sensor gave an L1 penalty, and C values of 10 and 1000 respectively.
As we can see from Tables 20 and 21, the errors levels we get when
attempting to predict at this tolerance level are pretty extreme. The
confusion matrix and ROC curves back up that assumption.

Error Rates for O3 Sensor 1 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.33 0.43 0.37 0.41
min 0.32 0.37 0.36 0.36
max 0.33 0.52 0.37 0.52

Table 20: Error Rates for Predicting
O3 Sensor 1 Accuracy with Logistic
Regression

Error Rates for O3 Sensor 2 with Logistic Regression
all features top 15 features

shuffled chunked shuffled chunked
avg 0.26 0.46 0.32 0.40
min 0.24 0.37 0.32 0.35
max 0.26 0.54 0.33 0.49

Table 21: Error Rates for Predicting
O3 Sensor 2 Accuracy with Logistic
Regression

The newer sensor appears to be more predictable, even with less
data– this may (again) be due to slightly more stable weather toward
the end of the test. Both sensors have strong trends between shuffled



141

Figure 52: AlphaSense O3 Sensor 1 and
2 with 15% Accuracy Threshold

and chunked validation techniques, especially given the ambitious
tolerance. They are also surprising resilient to feature set reduction.

As a next step, it would be useful to increase the tolerance to a more
reasonable level and re-train our model for prediction. The quality
of the readings suggests there is some very trustworthy and useful
information to be had with this sensor.

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 4308.2 1730.2

1 1931.8 3147.6

Table 22: AlphaSense O3 Sensor 1
Confusion Matrix w/Shuffled K-Fold

A
ct

ua
lV

al
ue

s

Predicted Values

0 1

0 2439.6 747.4

1 792.2 2050.8

Table 23: AlphaSense O3 Sensor 2
Confusion Matrix w/Shuffled K-Fold



142

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

alphaS1_work 0.32 1 0 1 0.44 0.14 0.94 0.55
as_h2s 0.55 0.84 0 0.08 0.96 0.01 0.63 0.44
avg_1440_lmse_scaled_sharpDust 0.22 0 0 0.08 0.52 1 1 0.4
avg_720_bkcarbon 1 0 0 0.24 0.54 0.27 0.59 0.38
bkcarbon 0.97 0 0 0.18 0.27 0.24 0.77 0.35
alphaS3_aux 0.68 0 0 0.04 0.97 0.02 0.67 0.34
forecastio_windSpeed 0.62 0.5 0 0.07 0.29 0.03 0.75 0.32
Solar Panel ( V) 0.17 0 1 0 0.98 0 0 0.31
avg_10_as_o3 0.19 0.35 0 0.05 0.51 0.29 0.76 0.31
Nitrogen Dioxide ( kOhm) 0.59 0.04 0 0.04 0.74 0 0.67 0.3
lmse_sck_no2 0.59 0 0 0.04 0.74 0 0.73 0.3
avg_60_bkcarbon 0.84 0 0 0.19 0.49 0.02 0.59 0.3
derivative_avg_1440_bkcarbon 0.19 0 0 0.07 0.63 0.18 1 0.3
avg_1440_bkcarbon 0.78 0 0 0.25 0.53 0.36 0.01 0.28
derivative_avg_720_bkcarbon 0.08 0 0 0.05 0.61 0.21 1 0.28
daily_avg_forecastio_humidity 0.08 0 0 0.28 0.55 0.95 0.01 0.27
avg_15_derivative_avg_15_as_temperature 0.3 0 0 0.07 0.49 0.29 0.65 0.26
alphaS1_aux 0.01 0.93 0 0.06 0.45 0.13 0.17 0.25
avg_60_forecastio_temperature_c 0.42 0 0.01 0.07 0.76 0.01 0.48 0.25
humidity_box_differential 0.15 0 0.03 0.1 1 0.08 0.42 0.25
avg_10_lmse_calib_as_o3 0.19 0 0 0.04 0.51 0.29 0.7 0.25
derivative_avg_60_bkcarbon 0.11 0 0 0.05 0.58 0.42 0.56 0.25
derivative_avg_1440_lmse_scaled_sharpDust 0.01 0 0 0.06 0.62 0.07 1 0.25
as_o3 0.04 0 0 0.76 0.79 0.01 0.07 0.24

Table 24: Top Features for Predicting
AlphaSense O3 Sensor 1



143

Figure 53: AlphaSense O3 Sensor 1
ROC Curve

Figure 54: AlphaSense O3 Sensor 2
ROC Curve



144

Corr. Lasso Lin Reg RF RFE Ridge Stability Mean

avg_1440_as_co 1 0.12 0 0.58 0.08 0 1 0.4
daily_avg_sck_humidity 0.71 0 0 0.07 0.57 1 0.36 0.39
avg_1440_bkcarbon 0.66 0 0 1 0.48 0.33 0.01 0.35
avg_60_bkcarbon 0.79 0 0 0.38 0.35 0.06 0.8 0.34
forecastio_pressure 0.27 0.82 0 0.1 0.33 0.04 0.75 0.33
avg_60_forecastio_apparentTemperature 0.17 1 0 0.07 0.4 0.09 0.57 0.33
avg_15_derivative_sck_temperature 0.03 0 0 0.04 0.57 0.45 1 0.3
bkcarbon 0.73 0 0 0.14 0.47 0.04 0.66 0.29
Solar Panel ( V) 0.1 0 1 0 0.86 0 0 0.28
avg_720_bkcarbon 0.76 0 0 0.38 0.45 0.23 0.12 0.28
derivative_avg_1440_lmse_calib_as_co 0.16 0 0 0.08 0.51 0.14 1 0.27
daily_avg_as_temperature 0.79 0 0 0.19 0.43 0.11 0.31 0.26
lmse_avg_30_scaled_arduino_ws 0.34 0.06 0 0.04 0.94 0.01 0.4 0.26
avg_1440_lmse_scaled_sharpDust 0.05 0 0 0.1 0.53 0.39 0.77 0.26
derivative_avg_720_lmse_scaled_sharpDust 0.1 0 0 0.08 0.61 0.05 1 0.26
alphaS1_aux 0 0 0.03 0.04 0.69 0.02 1 0.25
avg_30_scaled_arduino_ws 0.34 0 0.01 0.04 0.95 0 0.41 0.25
derivative_avg_1440_bkcarbon 0.09 0 0 0.06 0.61 0.01 1 0.25
forecastio_cloudCover 0.23 0 0 0.16 0.49 0.01 0.64 0.22
forecastio_clear-day 0.01 0 0.03 0 0.89 0.02 0.56 0.22
avg_60_forecastio_pressure 0.28 0 0 0.2 0.33 0.03 0.72 0.22
Nitrogen Dioxide ( kOhm) 0.1 0.13 0 0.04 0.78 0 0.41 0.21
forecastio_temperature_c 0.17 0 0.01 0.27 0.87 0.05 0.06 0.2
avg_60_as_no2 0.03 0.04 0 0.09 0.77 0 0.47 0.2

Table 25: Top Features for Predicting
AlphaSense O3 Sensor 2



145

Results Summary

Logistic Regression was used to predict the accuracy of six types of
sensors. The primary metrics for success were the AUC-ROC values
for the shuffled and chunked cross validation sets, the error rates
from our confusion matrices, and the believability/consistency of the
top predictive features after feature reduction. The AUC-ROC is the
only metric that takes into account our prediction of the likelihood
that our classification of each reading (and thus AUC-ROC is the
strongest indicator of algorithmic success).

After working with the data, we found a few important trends. (1)
Using both shuffled and chunked cross-validation techniques, we
found that divergence in their results suggests that we haven’t col-
lected enough data to account for time-variant, seasonal effects. (2)
We found that calibration was a difficult step, especially when con-
sidering sensors that clearly work some of the time, and are largely
in error at others. LMSE might not be the best solution in this case,
because it assigns extra weight to large errors (when it would be
most beneficial to our calibration if we ignored them). While we tried
several techniques to achieve get around this (mean absolute error, ig-
noring large errors, throwing out outlier values and doing a LMSE fit
on just the values close to the average), this stage of data processing
is heavily manual, requires intuition, and can break in unexpected
ways. (3) We saw our sensors missing high-concentration transient
events, though the one or two they did capture demonstrate the abil-
ity of the sensors themselves to measure such occurrences. This is
likely an airflow problem, and something important to address in
the future. Finally, (4) we can ascertain interesting insights about
sensor quality and self-noise (as oppose to predictable, systematic
failures) by examining the relationship between tolerance and the
machine learning success. These tolerances were chosen empirically
in this thesis, but this step could be automated by training models for
several tolerances and exploiting inflection points in the prediction
results.

Besides these insights about the machine learning process, we were
able to predict the accuracy of our sensors with success. All of the
results are summarized in table 26, and discussed briefly below.

We noticed that the Smart Citizen sensor provided little useful infor-
mation at these pollution levels, and prediction in this case reduced
to a different problem– the prediction of transient events (instead of



146

the prediction of sensor accuracy). The results of this analysis show
that we are reasonably able to predict transients, especially NO2 tran-
sients. In both cases, seasonal variation appears to have a slight effect
on the quality of our results. Both CO and NO2 transient prediction
rely on black carbon measurements as their main feature– the only
reference grade sensor used as a training value. This fits our expec-
tations (since all three result from combustion), and the commonality
gives us confidence that this is a real phenomena. This result sug-
gests that one high quality sensor could ground strong data quality
predictions for cheaper sensors measuring related pollutants.

The raw sharp data shows that it closely tracks the federal reference
most of the time, but for some periods it diverges greatly. This be-
havior is suggestive of a systematic failure (and thus promising for
our techniques). Unfortunately, this is our smallest dataset, because
reference data is only available on an hourly basis. Our results show
that we need more data for predicting across seasons. Despite this,
we see incredibly strong predictions in the shuffled case, especially
for 48 hour averages. These data are very promising.

The AlphaSense CO sensors clearly demonstrate responsiveness to
fine changes in pollution concentration. While the detail matches
our reference data, there are still issues with the relatively coarse
temperature compensation and calibration. It would be beneficial to
explore new methods for temperature-based calibration techniques.

Regardless of the pre-processing, we achieved strong predictive re-
sults for both AlphaSense CO sensors tested. Both gave similar re-
sults, and both had their own signal as their top feature (indicating
that the AlphaSense CO sensor has data ranges that were very reli-
able as well as ranges that were more likely to be inaccurate). Based
on the shared features between the two sensors tested, it appears that
wind and temperature likely factor into the CO predictions. There
is some discrepancy as to whether black carbon and NO2 are strong
predictors, so more data would be useful.

The AlphaSense NO2 results were unique. We see low error rates
and very strong predictions when shuffling the data, but the results
are highly variable when not shuffled. It does not appear to be a
random relationship, either– the shuffled results can be very strong
(AUC-ROC of .93) or very poor (.14, .28). This suggests that there are
useful predictive trends that vary drastically with the seasons. (For
example, humidity may be a strong predictor in the cold months, but
not in warm ones. If you try to apply the principles learned in the



147

Summary of Results
avg prediction error avg AUC-ROC
shuffled chunked shuffled chunked

SmartCitizen CO 0.09 0.09 0.82 0.61
SmartCitizen NO2 0.03 0.03 0.90 0.77

Sharp Dust 0.17 0.22 0.87 0.79
48hr avg Sharp Dust 0.08 0.25 0.98 0.79

AlphaSense CO 0.16 0.21 0.90 0.81
AlphaSense NO2 0.03 0.06 0.96 0.46
AlphaSense O3 0.30 0.45 0.77 0.58

Table 26: Summary of Machine Learn-
ing Results

cold as it gets warm, you will confidently assert incorrect predictions
and do much worse than guessing.) Despite the variability in the
chunked data, we see strong results in the shuffled data that imply
success across the seasons with more data collection.

Finally, the AlphaSense O3 raw data (like CO) tracked small varia-
tions in the reference grade equipment quite well. Like the CO and
NO2 sensors, the main issue in the quality of the results was the lack
of captured transients. In this test, we saw slight differences in results
from the newer and older sensors. The newer sensor provided better
results, with AUC-ROC scores averaging 0.81 versus 0.73, though this
is confounded by the changing weather.

We used the tightest tolerance for the AlphaSense O3 sensor (±15
ppb when the front end board is only spec’ed for ±10 ppb), which
is why the results aren’t the strongest of the set. They are still quite
good considering this decision. Loosening this tolerance would likely
improve predictive behavior. More data is required to make strong
O3 predictions across seasons.





8. Conclusions and Future Work

Insights

Instead of endeavoring to build a better inexpensive sensor, in this
work we attempted to understand and predict the sensors we already
had. These techniques have wide implications for the heterogeneous,
dense, and dynamic sensing ecosystem of the future.

We tested a machine learning approach to this problem on six dif-
ferent sensor types, and found strong predictive results in some
cases. In other cases, we discovered hopeful results, so long as the
sensors provided useful information. The cheapest sensors– the
Smart Citizen CO and NO2 sensors– did not provide any useful
data. The Sharp particulate sensor clearly followed trends with some
large divergences– it showed very strong predictability with a rea-
sonably large tolerance. The AlphaSense sensors exhibited inter-
esting behavior– in every case, they moved from one temperature-
dependent regime to another throughout the day. This switch in tem-
perature overlays a large step behavior on top of the measured signal
which otherwise appears to track real pollution concentration. This
extent of this temperature dependent ’quantization’ has an adverse
effect on data quality for the concentrations we observed.

Though strong predictability was observed in several cases, the in-
expensive sensors failed to record most transient phenomena. This
trend is likely related to airflow around the device. For CO and O3,
a few small transients were recorded by our sensors. A comparison
of transient duration and the sensor time constants also supports
the hypothesis that these sensors can detect such events. The NO2
transients were much faster, and the underlying problem is harder
to dissect. New designs that promote airflow should be built to test,
understand, and mitigate this issue in the future.



150

Contrasting ’chunked’ and ’shuffled’ cross-validation emerged in
this work as an interesting technique. The differences between the
two helped us understand whether we had collected enough data to
predict future or past data reliability given seasonal variation. When
these results align, it is a strong indication that we have captured
enough data to make meaningful predictions across measured sea-
sons. This test’s two month window limited our capacity to fully
characterize and predict the sensor reliability across season. This is
unsurprising given the dynamic weather and the short, early expo-
sure to cold. In some instances the chunked cases show one or two
poorly predicted major outliers. These may correspond to the major-
ity of temperate weather data training a model to predict the coldest
week at the beginning of the test, or generally dry and clear weather
sections predicting the rainiest and most humid week. By applying
this cross-validation strategy, we provide an automatic, quantifiable,
and objective measure of the dataset integrity.

Furthermore, the machine learning can be used as a tool to quantify
sensor quality. The predictability of failure is a strong indicator of the
quality of the device’s underlying physics and design. Additionally,
by varying the threshold of what we consider an ’accurate’ reading
and seeing how the quality of our model’s predictions change, we
can tease out the precision of a device. We expect a steep decline in
predictive power of our model when we cross the threshold from
systematic, predictable errors to the inherent resolution limit of the
device. By characterizing this break-point, we can make objective
claims about a device’s precision.

Feature reduction gives us an idea of the failure modes and/or cor-
relates for each sensor. In our tests, the top features were mostly in
line with expectations, which is a strong indicator that the results we
have observed are meaningful. For instance, the most relevant Sharp
particulate sensor features suggested it has (1) an operating range for
which it works well, and one for which it is less reliable, (2) covaries
with other pollutants, especially NO2, and (3) is sensitive to rain and
humidity. Clusters of similar features arising from different feature
reduction algorithms corroborate these conclusions.

Interestingly, the black carbon sensor reading– one of the only read-
ings from the EPA reference set to appear as a training feature– was
revealed to be the strongest predictor in nearly every case in which it
was included. This provides fundamental insight into system design–
one, high quality sensor on a device may be invaluable at predicting
and validating cheaper sensors on that same device. We can use these



151

machine learning techniques to test possible combinations of expen-
sive and cheap sensors, and thus optimize and inform our system
design.

By selectively removing these accurate data points taken by an ex-
pensive sensor, we move away from using our tool (1) to understand
the underlying mechanisms of how the device breaks down and (2)
as a method to inform future system design. Instead, we can use it to
characterize a pre-existing system, and explore whether we can ex-
tract more accurate results simply by using multiple low-cost sensors.
The applications of these machine learning techniques for sensor
characterization, system characterization, system design, data analy-
sis, and data quality assurance are numerous.

Beyond the machine learning and data itself, there are other im-
portant insights to consider from this work. In this thesis, we built
multiple hardware platforms. In the first, we found airflow to be a
likely issue for directional selectivity and sensitivity of the device. We
tested an inexpensive, custom wind sensor using differential pressure
techniques and showed both the complexity and the promise of such
a design. For our purposes it was a useful proxy for local airflow, but
there are many open questions and future applications for this wind
sensing modality.

Finally, there are insights regarding the backend design of the lear-
nAir system itself. The implementation exposed some weakness in
the HAL/JSON standard and ChainAPI implementation for these
applications– namely, (1) that resources do not have a self-description
of their type (i.e., they are defined through link relationships, so
you must maintain state as you traverse to know what type of re-
source you have), (2) that plural and singular forms are implemented
when grouping like resources as lists, which can exacerbate confu-
sion when traversing, querying, working with code, and defining
ontologies, and (3) data storage as it is implemented in ChainAPI
serves data in small date-range page chunks, with no clear start or
end date (i.e., it is currently impossible to distinguish a large break
in data from the beginning or end of data collection without external
context).

Although these issues warrant attention, none are indictments of the
system as a whole. In fact, ChainAPI addresses many important con-
cerns facing the air quality community, while also providing provoca-
tive benefits over standard database solutions. ChainAPI lowers the
barrier to entry, allowing for simple distributed hosting, sharing, and



152

ontology curation. Beyond that, it enables separate concerns so that
raw data is transparent, data processing can be centralized, and best
practices can emerge in an open ecosystem. This represents an im-
portant paradigm shift away from opaque self-curation and publish-
ing of data towards a world where data is automatically uploaded,
calibrated, and processed directly from hardware. With this thesis,
that platform has been expanded using tools to take advantage of
ChainAPI as an easily discoverable, scalable, dynamic, and browsable
system (a la the world wide web). There are many important archi-
tectural insights inherent in this structure– pushing away from the
standard static monolithic solutions, and towards a dynamic, open
system.

Applications

The applications for this work are numerous. The algorithms them-
selves show promise for quantifying and standardizing many de-
cisions in the real-world– they can be used to rigorously and auto-
matically characterize sensor failure modes and sensor quality. They
can objectively show us when we have enough data to understand
how a sensor reacts in a given climate. When paired with a reason-
able quality sensor, they can give a probability of data accuracy for
each reading, priming researchers to use and explore new, large,
distributed datasets and novel air quality models that factor in data
uncertainty.

The data backend has many applications for the issues facing air
quality sensor networks. The air quality community has been debat-
ing approaches to share data, define a common ontology, and engage
groups with lower quality sensor distributions. With the latest im-
plementation, ChainAPI has been adapted and expanded to support
the needs of this diverse, dynamic air quality ecosystem. It enables
new modes of interaction with large datasets beyond the basic needs
of air quality, and points to architectural advances for large scale
distributed sensor networks in general.

Beyond the obvious architectural features, the tools for ChainAPI
represent one of the first scalable semantic web toolkits. It allows
basic discovery, collection, and manipulation of data in a dynamic,
web-based data structure. It provides a framework for learning mod-
els that automatically find relevant data to update their state, as well
as crawl through the web and process/publish data automatically.



153

This is extensible to any type of algorithm, not only machine learning
ones.

There are many potential applications for such a system. The obvious
example is learnAir itself– a network of variable quality sensors that
automatically learn from their neighbors, as well as similar distant
sensors of a similar make and model. From this network, it would
be possible to blend the data and create a highly resolved and accu-
rate pollution map. Other useful applications are not hard to find,
though. This system could also enable a simple tool that automati-
cally characterizes and ranks new consumer devices– similar to the
process SCAQMD and EPA are doing now. This would save man-
ual labor, provide a more nuanced picture of the sensor in different
climates and conditions (i.e., instead of a simple overall ranking),
and standardize test procedures. Furthermore, as consumer devices
connect to ChainAPI, it is simple to build a map that uses the latest
data to display the best sensors for each location, based on its cli-
mate. Sensors could be certified for regions, conditions, or climates,
all using real-world test data.

While the backend is ripe for simple tasks like automatic calibration,
learning algorithms are still at a stage where it is important for a hu-
man to be in the loop. It is important to check outputs and feature
relationships against sophisticated intuition of the device physics to
ensure reliability. In the future, this could change with meta-analysis
and classification of common modes of failure (i.e., teaching an al-
gorithm to recognize and validate common failure modes such as
cross-sensitivity errors or commonly co-variant pollutants, etc.). This
second level machine learning task is an interesting future direction
to explore in the context of ChainAPI.

Overall, the backend system for learnAir provides interesting, novel
ways to explore large-scale ecosystems with variable quality data.
ChainAPI and the new ChainAPI tools demonstrate a unique and
compelling vision for the future of large scale, distributed, dynamic
data storage and interaction systems where data quality varies and
data processing is complex and decentralized.

Finally, the learnAir hardware represents a step forward for data as-
surance in the cheap, mobile space. The algorithms we have used can
intelligently inform hardware system design– for example, which
sensors work best together to create a trustworthy system. It is likely,
for instance, that one slightly nicer sensor can significantly improve
the reliability estimates for cheaper sensors that measure correlated



154

pollutants. Compared with similarly priced and designed systems,
learnAir has better data quality. Although obstacles remain in trans-
lating the outcomes of this work from a static context to a mobile
one, we have demonstrated in this thesis that the core principles are
sound. A device of this type can empower users to improve their
health with data that they can trust. It also provokes a conversa-
tion in the citizen sensing community– inherent to the design are
questions of data quality and complex sensor modalities. LearnAir
could play a small role in educating the population about under-
appreciated challenges with air quality sensing.

Future Work

LearnAir begets as many questions as it answers. There are many
steps to take in the future to advance this work.

Questions pertaining to core sensor technology and data quality
remain unanswered. For example: is there a way to promote the
capture of the pollution transients we missed? This requires more
co-location tests, new device geometries, and new airflow systems,
since we hypothesize airflow is largely to blame. Additionally, we
discovered that two months was not an optimal length of time to
collect data capable of strong cross-seasonal predictions. It would be
useful to run an extended co-location test, with additional sensors.

Airflow measurement is extremely important for the designs. While
we showed promise using our differential pressure design, a great
deal of work remains if we intend to optimize and/or orthogonalize
this cheap wind sensor and corroborate its accuracy.

Taking this work from a stationary context to a mobile one is also
an important goal. It may be possible to take this test on the road by
mounting one of our sensors to a trustworthy mobile reference, like
one of the Google-Aclima cars. Our partnership with EDF suggests
this is not unreasonable. It would also be possible to purchase or
rent high quality (>$15k) portable sensors as a reference, and walk
or bike with both. It would also be possible to spin or shake one of
our sensors around a fixed sensor at different speeds with a test rig
to simulate motion and airflow at different walking and biking rates.

Besides the questions of data collection and hardware design, ChainAPI
could use more tools and visualizations for air quality data. In the



155

short term, many of these machine learning scripts take hours to run
on a laptop (and this is a reduced test, with just one sensor and two
months of data). We are implementing these algorithms on Amazon
Web Services cloud clusters, and it would be very useful to tie in
these massively parallelized resources to ChainAPI with simple tools.
Other next steps include designing ways to handle and integrate lab-
oratory test data in ChainAPI, building out examples of calibration
and manufacturer scripts (to check sensor data for the spec’ed op-
erating range or service schedule), and to build out more tools and
algorithms to simplify interaction with the data. The most important
next steps around ChainAPI involve socializing it in the air quality
community and soliciting feedback about the ontology and usability
of the system.

On top of the ChainAPI backend, a few new websites or services
could be created. We believe this infrastructure could help automate
device testing for large air quality organizations, and drive a data-
rich display of tested devices. Using this information, it would be
simple to build out a user-friendly recommendation system for de-
vices that perform well in different environments. It would also be
trivial to apply this logic to the sensor level (looking at cost and per-
formance under various conditions) in addition to the device level.

There are many potential next steps and explorations to engage in
with machine learning itself. We started with a straightforward ap-
proach to error– a binary classification task. Regression analysis
provides the ability to predict the magnitude of the error instead of
just the existence of one. This could move us closer to true improve-
ment in the data quality instead of just quality control. Additionally,
deep-learning, time-dependent techniques could provide important
insights into the effect of time variant phenomena. Much of the ma-
chine learning landscape is still left to explore. We have built our
tools using scikit learn (a python library), and started basic explo-
ration of tools such as Weka and Google’s Tensor Flow– it would be
an interesting next step to build that into our ChainAPI infrastruc-
ture. Additionally, there are open questions about the best way to
approach calibration and pre-processing, as well as its automation.
While we attempted several algorithms, we have not arrived at a
strong solution; and this part of the process was more laborious and
unintuitive than the actual application of machine learning. There is
promise for intelligent, automatic techniques, but it would require an
intense research effort to bring it to fruition.

Additionally, our API data is not yet fully inclusive. Pollen level,



156

for instance, is extremely important for particulate sensing, though
no public pollen API exists at the time of this writing. There are
opportunities to scrape this data, however. While things like pollen
are obvious, the sophistication of publicly available derived features
can easily grow. Real time traffic data, traffic type (percentage heavy
diesel) based on road type, location, and time of day, construction
information, road age/type/condition, distance to the nearest street,
nearby building density and height, etc., could all be inferred from
public map data and GPS coordinates. These features could have a
profound effect on predictive accuracy.

At the end of all of this is a very fundamental question, which we
have not examined in this thesis– how useful is data with a prob-
abilistic quality indication? Certainly for individuals, it will give a
measure of trustworthiness and a better personal prediction. It can
even pull and plot trustworthy data from the closest reference sensor
when it detects an unreliable measurement. For researchers, how-
ever, this type of dataset requires using new techniques to deal with
datasets probabilistically, instead of the current approach which as-
sumes all data is of high quality. It is important to explore the types
of analyses and conclusions this work might enable, as we move to-
wards more advanced statistical analyses, based on larger, distributed
datasets.

Finally, a large part of this work deals with community engagement
and interaction. In the short term, this means writing articles and
journal papers on this topic, engaging community organizations,
and advancing the dialogue around sensor quality using learnAir as
an anchor point. Ultimately, as the pieces of this project are further
refined, we would like to build a production-quality, mobile device
that is trustworthy and useful to individuals, as well as an ecosystem
where they can engage with and ground the air quality data they
have collected.

Summary

The goal of this thesis was to create an affordable device that knows
when it is within a given radius of a higher quality reference, com-
pares itself to that reference, and learns when it is reliable and when
it is not based on the context of its measurement. To build such a sys-
tem, we needed to (1) test machine learning algorithms to ensure the
fundamental approach would work, (2) build an infrastructure for



157

this device to post data, find nearby sensors, and automatically up-
date a machine learning model of itself, and (3) create the hardware
that captures contextual data about a measurement and talks to that
infrastructure through a GPS enabled phone application.

We succeeded to build out all of these pieces. We built hardware
with six affordable sensors, and ran a two-month co-location test to
verify that machine learning could be used to predict sensor error.
Results were mixed based on the sensor, but in general there is a lot
of promise for these techniques to provide meaningful context to a
sensor reading. We also found that machine learning could be used
to draw conclusions about sensor quality and seasonal variation.

We built a database structure that can automatically apply these
algorithms to sensors in the network and learn as more devices are
added. This structure may also serve as a valuable tool for general
issues of data sharing in the air quality community.

Finally, we built a provocative piece of mobile hardware that uses
these core principles. There is still work to verify these principles in
a mobile context– however, this hardware should serve as a simple
way to test those principles, as well as a provocative tool to engage
citizen groups in a meaningful dialogue around sensor quality. It is
our hope and belief that in the near future a full characterization of
the mobile system– together with data leveraged from other, nearby
sensors– will enable the highest quality, truly mobile sensor system
on the market.





Appendix A - Notes on Project Selection and Prior Work

Without a background in air quality before this year, a large portion
of the thesis was getting up to speed with the community, learning
where the issues are, and trying to understand where advances might
be made. The thesis you’ve read is drastically different than the the-
sis I proposed ten months ago.

The first path we started down was to design and build some basic
prototypes for chambering air samples. The concept was to introduce
these devices in high wind environments (like on a car or bicycle),
and sample the air by sealing it in a chamber and tagging it with GPS
coordinates. Once a reading from an electrochemical gas sensor or
another type of sensor had reached steady-state, we would evacuate
the chamber and resample. This inter-sample settling time could be
learned and/or evaluated in real-time for varying conditions.

Below are mockups of two prototypes we 3D printed and prototyped
for AlphaSense electrochemical gas sensors. One is modeled after
their calibration accessory (with a motorized paddle that seals the
chamber when closed), and one is modeled after a revolver (with a
spinning opening). Another prototype we discussed was a syringe
style design, which has benefits for controlling chamber pressuriza-
tion.

The first of these was physically prototyped using the AlphaSense
AFE board, an Arduino, and a ReadBearLabs Bluetooth LE Arduino
Shield. It was connected to a smartphone where it reported values,
and could be commanded to open or close the chamber from the
phone.

After several more discussions, I decided to change directions and
focus on some of the problems that I perceived to have more direct
impact. In general, there seems to be trust of the AlphaSense sen-



160

Figure 55: Original Concept #1

Figure 56: Original Concept #2

sors in a mobile context, without discrete air sampling (regardless of
whether this is a correct assumption– to my knowledge, it has not yet
been tested appropriately). The needs of the air quality community
seem to be at an earlier stage– how to share data, how to characterize
consumer devices, and how to understand consumer sensor quality.
It seemed to be a waste of time to build another consumer device in a
crowded space, when there are no standard mechanisms to verify its
quality or spread its impact in the air quality community. Addition-
ally, there is skepticism towards mobile-first sensing. There are still
issues facing affordable stationary sensing, and no rigorous precedent
on which to validate truly mobile solutions.

It is my hope that within a few years, the leaders in the air quality
community will be positioned to make strong claims about whether



161

new devices (like the one proposed above) actually work. I hope
this work may help form the foundation for which those claims can
be made. While the goal is mobile, personal sensing, the principles
herein apply equally strongly to affordable, dense, heterogeneous,
sensor systems, which certainly will feature prominently in the future
of air quality measurement.





Appendix B - Hardware and Firmware

Schematics

LearnAir V2 schematics are below.



164



165



166



167

LearnAir V3 uses the same schematics for peripherals, power, ac-
celerometer, and BLE as for LearnAir V2. The two differing schemat-
ics (MCU and SD Card) are shown below.



168

Firmware

Below is the firmware for LearnAir V1. Code written for LearnAir
V2 and V3 is under development on github at http://github.com/
dramsay9/learnair.

1 #include "RTClib.h"
2 #include "SD.h"
3 #include "SPI.h"
4 #include <Wire.h>
5
6 //RTC
7 RTC_DS1307 RTC;
8 DateTime startTime;
9

10 //SD Card

http://github.com/dramsay9/learnair
http://github.com/dramsay9/learnair


169

11 File sensorData;
12
13 //Sharp Dust Sensor
14 int dustPin =0;
15 int dustVal =0;
16 int ledPower =11;
17 int delayTime =280;
18 int delayTime2 =40;
19
20 // Pressure Sensor
21 unsigned int pressureVal = 0;
22
23 // Alphasense Sensor
24 int asensePin =1;
25 int asenseValS1W =0;
26 int asenseValS1A =0;
27 int asenseValS2W =0;
28 int asenseValS2A =0;
29 int asenseValS3W =0;
30 int asenseValS3A =0;
31 int asenseValTemp =0;
32 int aSelAPin =10;
33 int aSelBPin =9;
34 int aSelCPin =8;
35
36
37
38 void setup() {
39
40 //RTC
41 RTC.begin ();
42
43 if (! RTC.isrunning ()) {
44 RTC.adjust(DateTime(__DATE__ , __TIME__));
45 }
46
47 // pressure I2C bus
48 Wire.begin ();
49 Wire.beginTransmission (0x6C);
50 Wire.write(byte(0x0B));
51 Wire.write(byte(0x00));
52 Wire.endTransmission ();
53
54 Serial.begin (9600);



170

55
56
57
58 //SD Card
59 Serial.print("Initializing�SD�card ...");
60 // see if the card is present and can be initialized:
61 if (!SD.begin(10, 11, 12, 13)) {
62 Serial.println("Card�failed ,�or�not�present");
63 return;
64 }
65
66 // Create SD Card Title
67 sensorData = SD.open("data.csv", FILE_WRITE);
68 if (sensorData){
69 sensorData.println("timestamp ,�alphaS1_work ,�alphaS1_aux ,�alphaS2_work ,

,! �alphaS2_aux ,�alphaS3_work ,�alphaS3_aux ,�alphaTemp ,�sharpDust ,�
,! pressureWind");

70 }
71 sensorData.close ();
72
73 Serial.println("card�initialized.");
74
75 //Sharp Dust Sensor
76 pinMode(ledPower ,OUTPUT);
77 pinMode(4, OUTPUT);
78
79 // Alphasense Sensor
80 pinMode(aSelAPin , OUTPUT);
81 pinMode(aSelBPin , OUTPUT);
82 pinMode(aSelCPin , OUTPUT);
83
84 delay (100);
85 Serial.println("SETUP�DONE.�SENSOR�READY.");
86
87 }
88
89
90
91 void loop() {
92
93 //RTC Start
94 startTime = RTC.now();
95
96 sharpSense ();



171

97 pressureSense ();
98 alphaSense ();
99

100 //SD Write
101 saveData ();
102
103 //Print Written Data
104 printData ();
105
106 //Wait 30 seconds
107 delay (30000);
108
109 }
110
111
112 void saveData (){
113
114 sensorData = SD.open("data.csv", FILE_WRITE);
115 if (sensorData){
116
117 sensorData.print(startTime.year(), DEC);
118 sensorData.print(’/’);
119 sensorData.print(startTime.month(), DEC);
120 sensorData.print(’/’);
121 sensorData.print(startTime.day(), DEC);
122 sensorData.print(’�’);
123 sensorData.print(startTime.hour(), DEC);
124 sensorData.print(’:’);
125 sensorData.print(startTime.minute (), DEC);
126 sensorData.print(’:’);
127 sensorData.print(startTime.second (), DEC);
128 sensorData.print(",");
129
130 sensorData.print(asenseValS1W);
131 sensorData.print(",");
132 sensorData.print(asenseValS1A);
133 sensorData.print(",");
134 sensorData.print(asenseValS2W);
135 sensorData.print(",");
136 sensorData.print(asenseValS2A);
137 sensorData.print(",");
138 sensorData.print(asenseValS3W);
139 sensorData.print(",");
140 sensorData.print(asenseValS3A);



172

141 sensorData.print(",");
142 sensorData.print(asenseValTemp);
143 sensorData.print(",");
144
145 sensorData.print(dustVal);
146 sensorData.print(",");
147 sensorData.println(pressureVal);
148
149 sensorData.close (); // close the file
150
151 Serial.println("Wrote�to�file.");
152 }
153 else{
154 Serial.println("Error�writing�to�file!");
155 }
156
157 }
158
159
160 void sharpSense (){
161
162 digitalWrite(ledPower ,LOW); // power on the LED
163 delayMicroseconds(delayTime);
164 dustVal=analogRead(dustPin); // read the dust value
165 delayMicroseconds(delayTime2);
166 digitalWrite(ledPower ,HIGH); // turn the LED off
167
168 }
169
170
171 void pressureSense (){
172
173 Wire.beginTransmission (0x6C);
174 Wire.write(byte(0x00));
175 Wire.write(byte(0xD0));
176 Wire.write(byte(0x40));
177 Wire.write(byte(0x18));
178 Wire.write(byte(0x06));
179 Wire.endTransmission ();
180
181 Wire.beginTransmission (0x6C);
182 Wire.write(byte(0x00));
183 Wire.write(byte(0xD0));
184 Wire.write(byte(0x51));



173

185 Wire.write(byte(0x2C));
186 Wire.endTransmission ();
187
188 Wire.beginTransmission (0x6C);
189 Wire.write(byte(0x07));
190 Wire.endTransmission ();
191
192 Wire.requestFrom (0x6C , 2); // request 2 bytes from Pressure Sensor
193
194 if (2 <= Wire.available ()) { // if two bytes were received
195 pressureVal = Wire.read(); // receive high byte (overwrites previous

,! reading)
196 pressureVal = pressureVal << 8; // shift high byte to be high 8

,! bits
197 pressureVal |= Wire.read(); // receive low byte as lower 8 bits
198 }
199
200 }
201
202
203 void alphaSense () {
204
205 const int delayNum = 10;
206
207 digitalWrite(aSelCPin ,LOW);
208 digitalWrite(aSelBPin ,LOW);
209 digitalWrite(aSelAPin ,HIGH);
210 delayMicroseconds(delayNum);
211 asenseValS1W=analogRead(asensePin);
212
213 digitalWrite(aSelCPin ,LOW);
214 digitalWrite(aSelBPin ,HIGH);
215 digitalWrite(aSelAPin ,LOW);
216 delayMicroseconds(delayNum);
217 asenseValS1A=analogRead(asensePin);
218
219 digitalWrite(aSelCPin ,LOW);
220 digitalWrite(aSelBPin ,HIGH);
221 digitalWrite(aSelAPin ,HIGH);
222 delayMicroseconds(delayNum);
223 asenseValS2W=analogRead(asensePin);
224
225 digitalWrite(aSelCPin ,HIGH);
226 digitalWrite(aSelBPin ,LOW);



174

227 digitalWrite(aSelAPin ,LOW);
228 delayMicroseconds(delayNum);
229 asenseValS2A=analogRead(asensePin);
230
231 digitalWrite(aSelCPin ,HIGH);
232 digitalWrite(aSelBPin ,LOW);
233 digitalWrite(aSelAPin ,HIGH);
234 delayMicroseconds (100);
235 asenseValS3W=analogRead(asensePin);
236
237 digitalWrite(aSelCPin ,HIGH);
238 digitalWrite(aSelBPin ,HIGH);
239 digitalWrite(aSelAPin ,LOW);
240 delayMicroseconds(delayNum);
241 asenseValS3A=analogRead(asensePin);
242
243 digitalWrite(aSelCPin ,HIGH);
244 digitalWrite(aSelBPin ,HIGH);
245 digitalWrite(aSelAPin ,HIGH);
246 delayMicroseconds(delayNum);
247 asenseValTemp=analogRead(asensePin);
248
249 }
250
251
252 void printData (){
253
254
255 Serial.print(startTime.year(), DEC);
256 Serial.print(’/’);
257 Serial.print(startTime.month (), DEC);
258 Serial.print(’/’);
259 Serial.print(startTime.day(), DEC);
260 Serial.print(’�’);
261 Serial.print(startTime.hour(), DEC);
262 Serial.print(’:’);
263 Serial.print(startTime.minute (), DEC);
264 Serial.print(’:’);
265 Serial.print(startTime.second (), DEC);
266 Serial.println("-------------------------------------");
267
268
269 Serial.print("Alphasense�Sensor�1.��Working:�");
270 Serial.print(asenseValS1W);



175

271 Serial.print("��Aux:��");
272 Serial.println(asenseValS1A);
273 Serial.print("Alphasense�Sensor�2.��Working:�");
274 Serial.print(asenseValS2W);
275 Serial.print("��Aux:��");
276 Serial.println(asenseValS2A);
277 Serial.print("Alphasense�Sensor�3.��Working:�");
278 Serial.print(asenseValS3W);
279 Serial.print("��Aux:��");
280 Serial.println(asenseValS3A);
281
282 Serial.print("Alphasense�Temp:�");
283 Serial.println(asenseValTemp);
284
285 Serial.print("Sharp�Dust:�");
286 Serial.println(dustVal);
287 Serial.print("Pressure:�");
288 Serial.println(pressureVal);
289
290 }

Hardware Analysis

Figure 57 shows the windspeed measurement comparison between
our conditioned pressure sensor measurement and the MassDEP
windspeed measurement. Within ±5% is denoted with green high-
lights.

Figure 58 shows the wind direction angle over the course of a day,
with an indication of how closely the conditioned wind pressure
sensor reading matched the actual windspeed. Green highlighting
indicates that our windspeed measurement was within ±5% of the
MassDEP reading. This plot is useful to look for systemic errors–
are there any wind directions where we consistently are accurate
in our measurment? Are there any wind directions where we’re
inaccurate? It appears there are no obvious relationships between
wind direction and accuracy from this graph. However, there are
interesting relationships between wind direction and error– please
see Chapter 5.



176

Figure 57: Wind Speed Measurement
with 10% Accuracy

Figure 58: Wind Direction with 10%
Accuracy WindSpeed Measurements
Denoted



Appendix C - ChainAPI Code

The original instance of ChainAPI can be found and installed from
https://github.com/ResEnv/chain-api, and a browsable version of
the Tidmarsh data backend in ChainAPI can be found at http://
chain-api.media.mit.edu/. It is well worth checking out some of the
interesting visualizations at http://tidmarsh.media.mit.edu/viz/ and
some of the interesting projects built on top of ChainAPI at http:
//tidmarsh.media.mit.edu/.

The air quality version of ChainAPI is an on-going work, and the
latest version can be found on github at http://github.com/dramsay9/
chain-api. A testing and development version of this instance is
generally available for browsing at http://learnair.media.mit.
edu:8000. The pre-processing and machine learning scripts can
be found in a jupyter notebook at http://github.com/dramsay9/
learnair-data-crunching, while the main chain tools are found in
their corresponding git repository: http://github.com/dramsay9/
chaincrawler, http://github.com/dramsay9/chainlearnairdata, and
http://github.com/dramsay9/chaindataprocessor.

https://github.com/ResEnv/chain-api
http://chain-api.media.mit.edu/
http://chain-api.media.mit.edu/
http://tidmarsh.media.mit.edu/viz/
http://tidmarsh.media.mit.edu/
http://tidmarsh.media.mit.edu/
http://github.com/dramsay9/chain-api
http://github.com/dramsay9/chain-api
http://learnair.media.mit.edu:8000
http://learnair.media.mit.edu:8000
http://github.com/dramsay9/learnair-data-crunching
http://github.com/dramsay9/learnair-data-crunching
http://github.com/dramsay9/chaincrawler
http://github.com/dramsay9/chaincrawler
http://github.com/dramsay9/chainlearnairdata
http://github.com/dramsay9/chaindataprocessor




Appendix D - Machine Learning

Test Conditions and Data Summary

The following charts show trends in precipitation, ambient pressure,
cloud cover, dew, and light level over the course of our two month
MassDEP co-location test.

Figure 59: Precipitation Intensity during
Test Period



180

Figure 60: Ambient Pressure during
Test Period

Weather Type # Hours During Test

clear hours 901
partly cloudy hours 292
cloudy hours 103
raining hours 96
windy hours 25
foggy hours 11

Table 27: Most Frequent Weather
During Co-location Test



181

Figure 61: Cloud Cover during Test
Period

Figure 62: Dew during Test Period



182

Figure 63: Lux during Test Period

Figure 64: Lux during Test Period



183

Data Pre-Processing

Features

The figure below includes most of the machine learning feature dis-
tributions plotted using Weka.

Figure 65: ML feature histograms
plotted with WEKA Tool



184

SmartCitizen CO

Following are additional plots from the SmartCitizen CO test outlin-
ing in more detail the LMSE calibration, the accuracy with a tighter
5% threshold, a visualization of the prediction accuracy and confi-
dence, and the top 15 random forest selected features.

Figure 66: SmartCitizen CO after LMSE
Calibration



185

Figure 67: SmartCitizen CO with 5%
Accuracy Threshold

Figure 68: SmartCitizen CO Prediction
Accuracy



186

Feature Importance

bkcarbon 0.027481618644
avg_60_bkcarbon 0.0265308524121
avg_720_bkcarbon 0.0231734007362
avg_1440_bkcarbon 0.0213230536622
avg_60_forecastio_windSpeed 0.0155772873357
min_since_plugged_in 0.0151174982516
temp_sck_box_differential 0.0148499597107
avg_60_forecastio_windBearing 0.014573874136
daily_avg_forecastio_humidity 0.0145367615821
avg_60_forecastio_dewPoint 0.0138511147354
avg_60_forecastio_pressure 0.0138476329536
daily_avg_sck_temperature 0.0138353139286
avg_30_ws 0.0136031033823
daily_avg_sck_humidity 0.0135231176757
avg_720_lmse_scaled_sharpDust 0.0132885608127

Table 28: Top 15 Features from Random
Forest for SmartCitizen CO, used in
Pruned Logistic Regression

Figure 69: SmartCitizen CO ROC Using
Top 15 Features



187

SmartCitizen NO2

Following are additional plots from the SmartCitizen NO2 test outlin-
ing in more detail the LMSE calibration, the accuracy with a tighter
4% threshold, and the top 15 random forest selected features.

Figure 70: SmartCitizen NO2 after
LMSE Calibration



188

Figure 71: SmartCitizen NO2 with 4%
Accuracy Threshold

Feature Importance

bkcarbon 0.0459890536212
avg_60_bkcarbon 0.0433384018273
avg_720_bkcarbon 0.024690468695
avg_1440_bkcarbon 0.0210702674105
avg_60_forecastio_windSpeed 0.0207714428351
min_since_plugged_in 0.0173782542533
avg_60_forecastio_windBearing 0.0172875801677
forecastio_windSpeed 0.0170176630128
avg_1440_lmse_calib_as_co 0.0162266191466
daily_avg_sck_humidity 0.0160827543221
avg_60_forecastio_pressure 0.0157403595739
avg_720_lmse_scaled_sharpDust 0.0154263296837
avg_1440_lmse_scaled_sharpDust 0.0153038668128
daily_avg_as_temperature 0.0151434934355
daily_avg_forecastio_temperature 0.0148922895233

Table 29: Top 15 Features from Random
Forest for SmartCitizen NO2, used in
Pruned Logistic Regression



189

Figure 72: SmartCitizen NO2 ROC
Using Top 15 Features



190

Sharp Dust Sensor

Following are additional plots from the Sharp dust sensor test outlin-
ing the complete raw data, a visualization of the prediction accuracy
and confidence, and the top 15 random forest selected features.

Figure 73: Sharp Raw Particulate Data

Following are ROC curves for the Sharp sensor using just the top 15
features (for both the hour and 48 hour averaged data), as well as
ROC curves and features for tighter tolerances (15% instead of 30% of
full-scale).



191

Figure 74: Sharp Particulate Prediction
Accuracy

Feature Importance

scaled_sharpDust 0.039935725943
avg_12_scaled_sharpDust 0.0390147943972
sharpDust 0.0390147211728
lmse_scaled_sharpDust 0.0381632767126
avg_48_scaled_sharpDust 0.0225005941711
lmse_avg_48_scaled_sharpDust 0.0207695248823
sck_humidity 0.0163292725576
Humidity ( % RAW) 0.0162400825573
no2 0.0149758603207
daily_avg_sck_humidity 0.0138699992039
daily_avg_forecastio_humidity 0.0132135840929
humidity_box_differential 0.0119641893085
co 0.0118968560369
sck_humidity_saturated 0.0103888721788
avg_60_forecastio_humidity 0.0102980544091

Table 30: Top 15 Features from Random
Forest for Sharp Sensor, used in Pruned
Logistic Regression



192

Figure 75: Sharp Particulate ROC Using
Top 15 Features

Figure 76: 48-hour Average Sharp
Particulate ROC



193

Figure 77: 48-hour Average Sharp
Particulate ROC Using Top 15 Features

Figure 78: Reduced Tolerance Sharp
Particulate ROC



194

Figure 79: Reduced Tolerance Sharp
Particulate ROC Using Top 15 Features



195

AlphaSense CO

Following are additional plots from the AlphaSense CO test out-
lining the complete raw data and LMSE process, the accuracy with
a tighter 7.5% threshold, a visualization of the prediction accuracy
and confidence, and the top 15 random forest selected features for
both sensors tested. Additionally, the ROC plots using just the top 15
features is included for both sensors.

Figure 80: AlphaSense CO Sensor 1
Raw Data



196

Figure 81: AlphaSense CO Sensor 1
after LMSE Calibration

Figure 82: AlphaSense CO Sensor 1 and
2 with 7.5% Accuracy Threshold



197

Figure 83: AlphaSense CO Sensor 1
Prediction Accuracy

Feature Importance

lmse_calib_as_co 0.0331983839664
avg_15_lmse_calib_as_co 0.0331946346979
avg_15_as_co 0.0322602817136
as_co 0.0310204625161
sck_temperature 0.0271023795431
avg_15_as_temperature 0.0251288063362
Temperature ( C RAW) 0.024693128613
avg_60_forecastio_temperaturec 0.0207050630804
forecastio_temperature_c 0.0192957142054
as_temperature 0.018952457567
avg_60_forecastio_apparentTemperature 0.017952895033
alphaTemp 0.0177934801727
temp_as_box_differential 0.017581796276
forecastio_temperature 0.0159096583245
temp_sck_box_differential 0.0150463135619

Table 31: Top 15 Features from Random
Forest for CO Sensor 1, used in Pruned
Logistic Regression



198

Figure 84: AlphaSense CO Sensor 1
ROC Using Top 15 Features

Feature Importance

lmse_calib_as_co 0.0518584805682
avg_15_lmse_calib_as_co 0.0404238890793
avg_720_bkcarbon 0.0222537733125
avg_60_bkcarbon 0.0216045744972
avg_1440_bkcarbon 0.0198813295966
as_o3 0.0198510401658
lmse_as_no2 0.0197364055605
avg_10_as_o3 0.0196965727088
bkcarbon 0.0194862747741
as_no2 0.0192353467551
avg_15_lmse_as_no2 0.0180978893662
lmse_avg_15_as_no2 0.0172526534474
avg_15_as_no2 0.0162905415767
avg_15_as_co 0.0158810645781
as_co 0.0158442759727

Table 32: Top 15 Features from Random
Forest for CO Sensor 2, used in Pruned
Logistic Regression



199

Figure 85: AlphaSense CO Sensor 2
ROC Using Top 15 Features



200

AlphaSense NO2

Following are additional plots from the AlphaSense NO2 test out-
lining the complete raw data and LMSE process, the accuracy with a
tighter 4% threshold, and the top 15 random forest selected features.

Figure 86: AlphaSense NO2 Raw Data

Figure 89 is the ROC using just the top 15 features to predict NO2.



201

Figure 87: AlphaSense NO2 after LMSE
Calibration

Figure 88: AlphaSense NO2 with 4%
Accuracy Threshold



202

Feature Importance

avg_60_bkcarbon 0.0422524706607
avg_1440_bkcarbon 0.0417472204692
bkcarbon 0.0385594210158
avg_720_bkcarbon 0.0347584125412
min_since_plugged_in 0.0203302045169
avg_60_forecastio_windSpeed 0.0164269542704
derivative_avg_1440_bkcarbon 0.0162252088513
avg_60_forecastio_windBearing 0.0159723111776
avg_1440_lmse_calib_as_co 0.0149001557286
avg_720_lmse_scaled_sharpDust 0.0148211173957
day_of_year 0.0145567862081
avg_60_forecastio_pressure 0.0142569975814
daily_avg_sck_humidity 0.013849933762
avg_30_ws 0.0137791673751
daily_avg_forecastio_temperature 0.0136871069105

Table 33: Top 15 Features from Random
Forest for AlphaSense NO2, used in
Pruned Logistic Regression

Figure 89: AlphaSense NO2 ROC Using
Top 15 Features



203

AlphaSense O3

Following are additional plots from the AlphaSense O3 test outlin-
ing the complete raw data and LMSE process, the accuracy with a
tighter 7.5% threshold, a visualization of the prediction accuracy
and confidence, and the top 15 random forest selected features for
both sensors tested. Additionally, the ROC plots using just the top 15
features is included for both sensors.

Figure 90: AlphaSense O3 Sensor 1 Raw
Data



204

Feature Importance

lmse_calib_as_o3 0.0388052728559
as_o3 0.038535780326
alphaS1_work 0.0256714422814
avg_10_as_o3 0.0143759967966
avg_10_lmse_calib_as_o3 0.0143305118271
as_h2s 0.0131703607364
avg_720_bkcarbon 0.0131177282572
avg_60_bkcarbon 0.0128714271405
avg_1440_bkcarbon 0.0124171125826
min_since_plugged_in 0.012288250826
bkcarbon 0.0122005264086
avg_1440_lmse_scaled_sharpDust 0.0118815562888
avg_720_lmse_scaled_sharpDust 0.0116399996115
daily_avg_as_temperature 0.0116365039598
alphaS3_work 0.0115947138563

Table 34: Top 15 Features from Random
Forest for O3 Sensor 1, used in Pruned
Logistic Regression

Feature Importance

avg_720_bkcarbon 0.0190323311421
avg_1440_bkcarbon 0.0186458328226
avg_1440_as_co 0.0185435347092
daily_avg_as_temperature 0.0177518437915
lmse_calib_as_o3 0.0170424373503
daily_avg_forecastio_temperature 0.0170308459472
avg_60_bkcarbon 0.0167897682822
min_since_pluggedin 0.0166420124401
avg_60_forecastio_pressure 0.016620265085
bkcarbon 0.015766200638
daily_avg_forecastio_humidity 0.0147498428636
avg_60_forecastio_apparentTemperature 0.0140509238175
forecastio_pressure 0.013926105091
avg_60_forecastio_temperaturec 0.0136171116857
day_of_year 0.0133242379573

Table 35: Top 15 Features from Random
Forest for O3 Sensor 2, used in Pruned
Logistic Regression



205

Figure 91: AlphaSense O3 Sensor 1
after LMSE Calibration



206

Figure 92: AlphaSense O3 Sensor 2
after LMSE Calibration

Figure 93: AlphaSense O3 Sensor 1 and
2 with 7.5% Accuracy Threshold



207

Figure 94: AlphaSense O3 Sensor 2
Prediction Accuracy

Figure 95: AlphaSense O3 Sensor 1
ROC Using Top 15 Features



208

Figure 96: AlphaSense O3 Sensor 2
ROC Using Top 15 Features



Bibliography

[1] WHO News Release. 7 million premature deaths annually
linked to air pollution., March 2014.

[2] WHO Report. Burden of disease from air pollution 2012, 2014.

[3] Giles F. Filley, Donald J. MacIntosh, and George W. Wright.
Carbon monoxide uptake and pulmonary diffusing capacity in
normal subjects at rest and during exercise. Journal of Clinical
Investigation, 33(4):530, 1954.

[4] Elizabeth N. Allred et al. Short-term effects of carbon monoxide
exposure on the exercise performance of subjects with coronary
artery disease. New England Journal of Medicine, 321(21):1426–
1432, 1989.

[5] Joel Schwartz et al. Traffic related pollution and heart rate
variability in a panel of elderly subjects. Thorax, 60(6):455–461,
2005.

[6] Ron Williams et al. Evaluation of Field-deployed Low Cost PM
Sensors. EPA Evaluation Report EPA/600/R-14/464, 2014.

[7] John V. Molenar. Theoretical analysis of pm2.5 mass measure-
ments by nephelometry - #110. Colorado State University Press,
2005.

[8] Alfred H. Lowrey, Lance A. Wallace, et al. Combustion Efficiency
and Air Quality, chapter 10: Concentrations of Combustion Par-
ticulates in Outdoor and Indoor Environments, pages 175–211.
Plenum Press, 1995.

[9] Environmental Protection Agency. National air quality and



210

emissions trends report. 2014.

[10] Particulate Matter in the UK, chapter 5: Methods for Monitoring
Particulate Concentration. Department for Environment, Food,
and Rural Affairs, 1999.

[11] Anna Morpurgo, Federico Pedersini, and Alessandro Reina.
A low-cost instrument for environmental particulate analysis
based on optical scattering. In 2012 IEEE International, 2012.

[12] Jayakarthigeyan Prabakar et al. Evaluation of low cost partic-
ulate matter sensor for indoor air quality measurement. Inter-
national Journal of Innovative Research in Science, Engineering, and
Technology, 4(2):366–369, 2015.

[13] Elena Austin et al. Laboratory evaluation of the shinyei ppd42ns
low-cost particulate matter sensor. PloS one, 10(9):e0137789, 2015.

[14] Compact, Low Cost Particle Sensor. Roger L Unger, assignee.
Patent US 8009290 B2. 30 Aug. 2011. Print.

[15] personal communication. Dr. Jesse Kroll and David Hagan, MIT
Department of Civil and Environmental Engineering.

[16] Air Quality Sensor Performance Evaluation Center. Field eval-
uation alphasense opc-n2 sensor. Technical report, South Coast
Air Quality Management District, 2015s.

[17] Alphasense Application Note. AAN 104: How electrochemical
gas sensors work. Technical report, 2014.

[18] Susanne Steinle, Stefan Reis, and Clive Eric Sabel. Quantifying
human exposure to air pollution—moving from static monitor-
ing to spatio-temporally resolved personal exposure assessment.
Science of the Total Environment, 443:184–193, 2013.

[19] David Hasenfratz et al. Pushing the spatio-temporal resolution
limit of urban air pollution maps. In 2014 IEEE International
Conference on Pervasive Computing and Communications (PerCom),
2014.

[20] Sotiris Vardoulakis et al. Modelling air quality in street canyons:
A review. Atmospheric Environment, 37(2):155–182, 2003.



211

[21] Shaodong Xie et al. Spatial distribution of traffic-related pollu-
tant concentrations in street canyons. Atmospheric Environment,
37(23):3213–3224, 2003.

[22] Agata Rakowska et al. Impact of traffic volume and composi-
tion on the air quality and pedestrian exposure in urban street
canyon. Atmospheric Environment, 98:260–270, 2014.

[23] Soni Kaur, Mark J. Nieuwenhuijsen, and Roy N. Colvile. Fine
particulate matter and carbon monoxide exposure concentra-
tions in urban street transport microenvironments. Atmospheric
Environment, 41(23):4781–4810, 2007.

[24] Stuart Batterman, Sarah Chambliss, and Vlad Isakov. Spatial
resolution requirements for traffic-related air pollutant exposure
evaluations. Atmospheric Environment, 94:518–528, 2014.

[25] Colby Adams, Philip Riggs, and John Volckens. Development
of a method for personal, spatiotemporal exposure assessment.
Journal of Environmental Monitoring, 11(7):1331–1339, 2009.

[26] Gerard Hoek et al. A review of land-use regression models to
assess spatial variation of outdoor air pollution. Atmospheric
Environment, 42(33):7561–7578, 2008.

[27] H. K. Lai et al. Personal exposures and microenvironment
concentrations of pm 2.5, voc, no 2 and co in oxford, uk. Atmo-
spheric Environment, 38(37):6399–6410, 2004.

[28] Juana Maria Delgado-Saborit. Use of real-time sensors to char-
acterise human exposures to combustion related pollutants.
Journal of Environmental Monitoring, 14(7):1824–1837, 2012.

[29] Anju Goel and Prashant Kumar. A review of fundamental
drivers governing the emissions, dispersion and exposure to
vehicle-emitted nanoparticles at signalised traffic intersections.
Atmospheric Environment, 97:316–331, 2014.

[30] Yungang Wang et al. Roadside measurements of ultrafine par-
ticles at a busy urban intersection. Journal of the Air Waste Man-
agement Association, 58(11):1449–1457, 2008.

[31] Yun Cheng, Xiucheng Li, et al. Aircloud: a cloud-based air-
quality monitoring system for everyone. SENSYS, 2014.



212

[32] Vijay Sivaraman, James Carrapetta, et al. Hazewatch: A partic-
ipatory sensor system for monitoring air pollution in sydney.
Eighth IEEE Workshop on Practical Issues in Building Sensor Net-
work Applications, pages 56–64, 2013.

[33] Prabal Dutta, Paul M. Aoki, et al. Common sense: Participatory
urban sensing using a network of handheld air quality monitors.
Proceedings of the 7th ACM conference on embedded networked sensor
systems, 2009.

[34] David Hasenfratz, Olga Saukh, et al. Opensense zurich: A
system for monitoring air pollution. Presented at the Nano-Tera
Annual Plenary Meeting in Bern, 2011.

[35] Smartcitizen sensor. https://smartcitizen.me, 2013.

[36] Matt Burgess. London gets a flock of air pollution monitor-
ing pigeons. Wired News, http://www.wired.co.uk/article/
london-pollution-pigeon-air-patrol, 2016.

[37] Natasha Khan. Are cheap sensors and concerned cit-
izens leading to a shift in air monitoring? Public-
Source News, http://publicsource.org/investigations/
are-cheap-sensors-and-concerned-citizens-leading-shift-air-monitoring,
2015.

[38] Air quality sensor performance evaluation center. Technical
report, South Coast Air Quality Management District, 2015.

[39] Spencer Russell. Chainapi repository. https://github.com/

ResEnv/chain-api, 2014.

[40] Spencer Russell and Joseph Paradiso. Hypermedia apis for sen-
sor data: A pragmatic approach to the web of things. Proceedings
of the 11th International Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services, pages 30–39, 2014.

[41] Responsive Environments, MIT Media Lab. Tidmarsh project.
http://tidmarsh.media.mit.edu/, 2013.

[42] Alexandra Moraru, Marko Pesko, Maria Porcius, Carolina For-
tuna, and Dunja Mladenic. Using machine learning on sensor
data. Journal of Computing and Information Technology, 18(4):341–
347, 2010.

https://smartcitizen.me
http://www.wired.co.uk/article/london-pollution-pigeon-air-patrol
http://www.wired.co.uk/article/london-pollution-pigeon-air-patrol
http://publicsource.org/investigations/are-cheap-sensors-and-concerned-citizens-leading-shift-air-monitoring
http://publicsource.org/investigations/are-cheap-sensors-and-concerned-citizens-leading-shift-air-monitoring
https://github.com/ResEnv/chain-api
https://github.com/ResEnv/chain-api
http://tidmarsh.media.mit.edu/


213

[43] Sajjad Ahmad, Ajay Kalra, and Haroon Stephen. Estimating
soil moisture using remote sensing data: A machine learning
approach. Advances in Water Resources, 33(1):69–80, 2010.

[44] Matt Smith, Charles Castello, and Joshua New. Machine learn-
ing techniques applied to sensor data correction in building
technologies. 12th International Conference on Machine Learning
and Applications (ICMLA), pages 305–308, 2013.

[45] M. Strano and B.M. Colosimo. Logistic regression analysis for
experimental determination of forming limit diagrams. Inter-
national Journal of Machine Tools and Manufacture, 46(6):673–682,
2006.

[46] Safecast. http://www.safecast.org, 2011.

[47] Aclima. http://aclima.io, 2010.

[48] Copenhagen wheel. http://superpedestrian.com, 2009.

[49] David Hasenfratz et al. Participatory air pollution monitoring
using smartphones. Mobile Sensing, 2012.

[50] David Hasenfratz, Olga Saukh, and Lothar Thiele. On-the-fly
calibration of low-cost gas sensors. Wireless Sensor Networks,
pages 228–244, 2012.

[51] Olga Saukh, David Hasenfratz, and Lothar Thiele. Reduc-
ing multi-hop calibration errors in large-scale mobile sensor
networks. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks, 2015.

[52] Brian Mayton, Gershon Dublon, Sebastian Palacios, and Joseph
Paradiso. Truss: Tracking risk with ubiquitous smart sensing.
IEEE Sensors, pages 1–4, 2012.

[53] Clairity. http://clairity.mit.edu/site/html/home.html, 2014.

[54] Tricorder project. http://www.tricorderproject.org/, 2007.

[55] Propeller health. http://www.propellerhealth.com, 2010.

[56] Upod project. http://mobilesensingtechnology.com/, 2016.

http://www.safecast.org
http://aclima.io
http://superpedestrian.com
http://clairity.mit.edu/site/html/home.html
http://www.tricorderproject.org/
http://www.propellerhealth.com
http://mobilesensingtechnology.com/


214

[57] Giuseppe Anastasi, Paolo Brushci, et al. ‘u-sense’, a coopera-
tive sensing system for monitoring air quality in urban areas.
ERCIM News, 2014.

[58] Airbeam project. http://aircasting.org/, 2014.

[59] Elm project. http://elm.perkinelmer.com/map/, 2013.

[60] Breezometer project. https://breezometer.com/, 2015.

[61] Cleanspace project. https://our.clean.space/, 2016.

[62] Clarity pm2.5 sensor. http://clarity.io, 2014.

[63] Tzoa enviro-tracker. http://www.tzoa.com, 2014.

[64] uhoo indoor sensor. https://uhooair.com/s, 2016.

[65] Air quality egg project. http://airqualityegg.com/, 2012.

[66] Speck sensor. https://www.specksensor.com/, 2015.

[67] Atmotube. http://atmotube.com/, 2015.

[68] Airbox lab. http://foobot.io/, 2013.

[69] Citizenair.io. http://www.citoyenscapteurs.net/2014/03/31/

citizenair-io/, 2014.

[70] Public lab. https://publiclab.org/, 2010.

[71] Django framework. https://www.djangoproject.com/, 2005.

[72] Apache hadoop. http://hadoop.apache.org/, 2011.

[73] RDF Working Group. Rdf 1.1 schema, concepts and abstract
syntax. Technical report, World Wide Web Consortium, 2014.

[74] JSON-LD. http://json-ld.org/, 2010.

[75] HAL - hypertext application language. http://stateless.co/

hal_specification.html, 2013.

[76] Iotivity standard. https://www.iotivity.org/, 2015.

http://aircasting.org/
http://elm.perkinelmer.com/map/
https://breezometer.com/
https://our.clean.space/
http://clarity.io
http://www.tzoa.com
https://uhooair.com/s
http://airqualityegg.com/
https://www.specksensor.com/
http://atmotube.com/
http://foobot.io/
http://www.citoyenscapteurs.net/2014/03/31/citizenair-io/
http://www.citoyenscapteurs.net/2014/03/31/citizenair-io/
https://publiclab.org/
https://www.djangoproject.com/
http://hadoop.apache.org/
http://json-ld.org/
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html
https://www.iotivity.org/


215

[77] Alljoyn framework. https://allseenalliance.org/framework,
2011.

[78] Evan Lynch and Joseph Paradiso. Sensorchimes: Musical map-
ping for sensor networks. New Interfaces for Musical Expression,
2016.

[79] QianSheng Li, Gershon Dublon, Brian Mayton, and Joseph A.
Paradiso. Marshvis: Visualizing real-time and historical ecologi-
cal data from a wireless sensor network. IEEE VIS, 2015.

[80] Cheng Liu et al. A directional anemometer based on mems
differential pressure sensors. 9th International Conference on
Nano/Micro Engineered and Molecular Systems (NEMS), pages
517–520, 2014.

[81] Steven G. Brown, Paul T. Roberts, et al. Characterization of 2001
ozone event-triggered voc and carbonyl samples in houston.
Technical report, Sonoma Technology, Inc. Presented at TCEQ
State of the Science Meeting, 2002.

[82] Eduardo P. Olaguer. Near-source air quality impacts of large
olefin flares. Journal of the Air Waste Management Association,
62(8):978–988, 2012.

[83] C. Treviño and F. Méndez. Simplified model for the prediction
of ozone generation in polluted urban areas with continuous
precursor species emissions. Atmospheric Environment, 33(7):1103
– 1110, 1999.

https://allseenalliance.org/framework

	1. Introduction
	2. Background and Motivation
	Air Monitoring
	Sensor Networks
	Motivation

	3. Related Work
	Air Quality
	Data Sharing Solutions

	4. Overview of Design and Contributions
	Machine Learning Validation
	ChainAPI Instance and Tools
	A Provocative Example

	5. Hardware Design and Analysis
	LearnAir Version 1
	MassDEP Site
	LearnAir Version 2
	LearnAir Version 3
	Hardware Comparison and Analysis

	6. ChainAPI for Air Quality
	A New Ontology for Air Quality
	Traversing ChainAPI
	ChainAPI Tools for Scalable, Automatic Data Analysis
	Summary

	7. Data Analysis and Machine Learning
	Test Conditions and Data Collection Summary
	Overview of Data Pre-Processing and ML Strategy
	Machine Learning Features
	General Trends in the Data
	SmartCitizen CO
	SmartCitizen NO2
	Sharp Dust Sensor
	AlphaSense CO
	AlphaSense NO2
	AlphaSense O3
	Results Summary

	8. Conclusions and Future Work
	Insights
	Applications
	Future Work
	Summary

	Appendix A - Notes on Project Selection and Prior Work
	Appendix B - Hardware and Firmware
	Schematics
	Firmware
	Hardware Analysis

	Appendix C - ChainAPI Code
	Appendix D - Machine Learning
	Test Conditions and Data Summary
	Data Pre-Processing
	Features
	SmartCitizen CO
	SmartCitizen NO2
	Sharp Dust Sensor
	AlphaSense CO
	AlphaSense NO2
	AlphaSense O3


